Синтез профиля полюса дипольного магнита

А.О.Мыцыков

ИФВЭЯФ ННЦ ХФТИ, г. Харьков

(1)

(2)

(3)

(4)

введение

В этой работе используется метод конформных преобразований для получения выражений, открывающих возможность синтеза профиля полюса по заданному полю. Ниже приводятся результаты, обобщающие выражения Кристоффеля-Шварца[1-3] на случай криволинейных границ полюсов.

КОНФОРМНОЕ ОТОБРАЖЕНИЕ ПОЛОСЫ В ПОЛОСУ

Для описания поля будем использовать функцию, обратную комплексному потенциалу, совпадающую с конформным отображением прямолинейной полосы 0 < Im(z) < H плоскости (z) на область полюса (ω). Используя подход, изложенный в [1], получим формулы для отображения "полоса-полоса".

где

Функции v_0 и v_H описывают угол наклона профиля полюса на верхнем и нижнем берегах соответственно. Используя известную связь комплексного потенциала z (ω)с полем

и выражение (1), запишем производные поля на плоскости w. Действительно, так как

, то

Применив эту процедуру столько раз, сколько производных по полю, мы получим систему, связывающую коэффициенты разложения поля в точке, соответствующей точке z с производными функции G(z). А так как мы вольны установить соответствие

ω(0)=0, то:

$$B(0) = \exp[-G(0)]$$

$$B'(0) = -G'(0)B(0)^{2};$$

$$B''(0) = \left(2G'(z)^{2} - G''(z)\right)B(0)^{3};$$

$$B^{(3)}(0) = \left(-6G'(0)^{3} + 7G'(0)G''(0) - G^{(3)}(0)\right)B(0)^{4}$$

... (5)

Эта система может быть решена относительно производных функции G.

РЕКОНСТРУКЦИЯ ПОЛЮСА

Пусть поле в рабочей области на медианной плоскости дипольного магнита описывается выражением:

где $Bn = B^{(i)}(0)/B(0)^{(i+1)}$.

В таблице 1 приведены использованные значения *Bn* и рассчитанные значения $G^{(i)}(0)$. Используя полученные по формуле (1) значения $G^{(i)}$ для различных значений $h(z=x+i\cdot\pi\cdot h)$, восстанавливается форма профиля полюса рис.1.

Рис. 1. Формы полюсов для различных значений h. Один из этих профилей (h=0.573) был использован для просчета полюса магнита в предположении $\mu=\infty$ по программе POISSON [4]. Полюс магнита от крайних точек профиля уходит вертикально вверх. Результаты приведены на рис. 2.

Рис. 2. Сравнение поля, использованного для синтеза полюса $-B_{mulb}$ и поля от расчитанного полюса $B_{poisson}$. Полученные профили могут быть хорошим первым приближением при синтезе формы полюса по требуемому полю. Однако степенной ряд в качестве описания функции G неудовлетворителен при уходе от 0. Мнимая часть этой функции на полюсе равна углу наклона профиля, и поэтому она ограничена. Степенной же ряд ведет себя иначе.

		Таблица		
i	$G^{(i)}(0)$	Bn ⁽ⁱ⁾ -curve	Bn ⁽ⁱ⁾ -line	
0	0.	.1000E+01	.1000E+01	
1	0.02625	2620E-01	2625E-01	
2	0.00137	3768E-06	7439E-07	
3	-0.00085	.5984E-03	.9867E-03	
4	0.004294	.6073E-03	.4553E-02	
5	-0.0024	.1028E-02	.4235E-02	
6	0.01416	3262E-03	1587E-01	
7	-0.0054	.3354E-02	.1621E-01	
8	0.05531	2431E-01	6211E-01	
9	0.00452	.3057E-01	.5594E-01	
10	0.28513	3238E-00	2672E-00	

4. ТОЧНАЯ РЕКОНСТРУКЦИЯ ПОЛЮСА

Для определения функции G в случае дипольной симметрии используем следующие соглашения: $v_0(t)=0$;

На полюсе выделим 6 точек a_j . Каждую точку будем характеризовать значением слева $q_{\cdot}(a_i)$ и значением справа $q_{+}(a_i)$. Если на профиле нет изломов и q(t) линейна относительно t;

то справедливо следующее:

(8)

(7)

Можно написать подобные уравнения для стольких производных функции G(z), сколько гармоник в разложении поля мы хотим удерживать. Связь производных G(z) и B(z) установлена в (4,5). В таблице 2 приведены параметры конформного отображения полосы в полосу для полюсов образованных криволинейными сегментами рис. 3 без изломов между 6-ю точками. Для сравнения приведен и профиль, образованный прямолинейной ломаной. Оба эти отображения строились по заданной квадрупольной составляющей поля и требованию занулить секступольную. В таблице *-знаком помечены параметры, которые были вычислены. Кажущийся "произвол" в выборе остальных параметров, как правило, определяется конструктивными соображениями.

			-	Таблица 2		
q(t)	Line	Curve	a_i	Line	Curve	
q(-∞)	5000π	5000π				
$q(a_1)_{-}$	5000π	5000π	a ₁	-4.5	-4.5	
$q(a_1)_+$	2500π	5000π				
$q(a_2)_{-}$	2500π	2000π	a ₂	-3.8	-3.8	
$q(a_2)_+$.05041π*	2000π				
$q(a_3)_{-}$.05041π*	.01222π*	a ₃	-3.0	-3.0	
$q(a_3)_+$.01520π*	.01222π*				
$q(a_4)_{-}$.01520π*	.01798π*	a_4	3.0	3.0	
$q(a_4)_+$	05041π*	.01798π*				
$q(a_5)_{-}$	05041π*	2000π	a_5	3.8	3.8	
$q(a_5)_+$.2500π	2000π				
$q(a_6)$.2500π	.5000π	a ₆	4.5	4.5	
$q(a_6)_+$.5000π	.5000π				
$q(\infty)$.5000π	.5000π	Н	1.8	1.8	

Рис. 3. Нормализованные градиенты и поля для профилей из криволинейных и прямых сегментов.

Литература

- М.А.Лаврентьев, Б.В.Шабат. Методы теории функции комплексного переменного. М.: Наука, 1973.
- 2. L.N.Trefethen SIAM J. Sci. Stat. Comput. 1 (1080), 82--102.

- G.Lee-Whiting, G.Keech, Clalk River, Ontario, 1969: FSD/ING-151, AECL--3253.
- 4. POISSON Group Programs.User's Guide, CERN,1965.

Статья поступила: в редакцию 25 мая 1998 г., в издательство 1 июня 1998 г.