M1-резонанс в нечетных ядрах sd-оболочки

А.С.Качан

ИФВЭЯФ ННЦ ХФТИ, г. Харьков

Ранее [1,2], изучая у-распад резонансноподобных структур, наблюдающихся в реакции радиационного захвата протонов ядрами ²¹Ne, ²⁵Mg, ²⁹Si, ³⁴S, мы обнаружили новое явление, связанное c существованием триплетного спаривания между нечетными нейтроном и протоном, находящимися на одной орбите. Это проявляется в том, что положение центра тяжести (ц.т.) магнитного дипольного резонанса (МДР) в нечетно-нечетных 4N+np ядрах находится на 3 МэВ ниже по энергии возбуждения, чем в четно-четных 4N- ядрах. В этих же работах предложена модель для объяснения данного явления. Из этой модели следует, что нечетные ядра sdоболочки можно разделить на две группы в зависимости от того, в каком состоянии находится нечетная частица в d_{5/2} – или d_{3/2} – подоболочке.

К настоящему времени накоплена обширная экспериментальная спектроскопическая информация о резонансных состояниях ядер ²⁷Al, ³¹P, ³⁵Cl, ³⁷Cl с помощью реакции радиационного захвата протонов ядрами ²⁶Mg, ³⁰Si, ³⁴S, ³⁶S соответственно [3-7]. Однако в области энергий, гле наблюдаются резонансноподобные в данной структуры(РПС) реакции [8,9], экспериментальной информации недостаточно для того, чтобы надежно идентифицировать магнитный дипольный резонанс (МДР). Поэтому мы провели цикл измерений, связанных с идентификацией и определением положения центра тяжести, тонкой структуры и полной силы МДР в ядрах ²⁷Al, ³¹P, ³⁵Cl, ³⁷Cl. Функции возбуждения 26 Mg, 30 Si, 34 S, 36 S(p, γ), 27 Al, 31 P, ³⁷Cl, ³⁵Cl, реакций необходимые для определения сил резонансов $(S=(2J+1)\Gamma_{n}\Gamma_{n}/\Gamma)$, были измерены в интервале энергий ускоренных протонов E_p=1,8-3 МэВ для ²⁷Al и ³⁷Cl, E_p=1-2,7 МэВ для ³¹Р, E_p=1,2-3 МэВ для ³⁵СІ [8,9]. Измерения проводились на ускорителе ЭСУ-4 ННЦ ХФТИ. Для измерения выхода у-квантов с E_y>2,6 МэВ применялся NaJ(Tl) детектор размерами Ø150x100мм, который располагался на расстоянии 5 см от мишени под углом 55° относительно пучка протонов для направления исключения зависимости выхода у-квантов от угла. Силы резонансов определялись из сравнения площади под резонансной кривой для исследуемых резонансов с таковой под калибровочным резонансом. Для ²⁷Al это резонанс при Е_р=1966 кэВ, для ³¹Р - резонанс при E_p=1880 кэВ, ³⁵Cl - резонанс при E_p=1212 кэВ, ³⁷Cl -

резонанс при E_p=1887 кэВ, силы которых хорошо известны [3]. В результате проведенных измерений в нечетных ядрах были обнаружены РПС, подобные тем, какие наблюдаются для четных ядер, исследованных нами ранее [1,2]. Во всех предыдущих случаях РПС имели сложную структуру, т.е. состояли из состояний, принадлежащих как М1-резонансу состояния, М1-резонансу, основного так И "построенному" на возбужденных состояниях. И только в одном случае (³⁴Cl) ц.т. РПС определялся состояниями М1-резонанса на возбужденном состоянии. Окончательный вывод о природе наблюдаемых РПС может быть сделан после установления всех квантовых характеристик резонансных состояний, составляющих эти РПС и изучения их ураспада. С этой целью нами измерены спектры и угловые распределения у-квантов, образующихся при распаде наиболее интенсивных резонансов, составляющих данные РПС, с помощью Ge(Li)-детектора.

Измерения проводились на электростатическом ускорителе ННЦ ХФТИ. Для измерения у-спектров применялся Ge(Li)-детектор объемом 60 см³ и разрешением 4 кэВ для Еү=1332 кэВ. Детектор располагался на расстоянии 7 см от мишени. Мишень находилась в центре вращения под углом 45° к направлению пучка протонов. Измерения проводились под углами 0°, 60°, 30°, 90°, 45°. Поправки, учитывающие конечные размеры детектора, выбирались из литературных данных. Монитором служил сцинтилляционный детектор с кристаллом NaI(Tl) размерами Ø150x100 мм. Этот же детектор использовался и при измерении функции возбуждения. Результаты измерений в виде коэффициентов разложения по полиномам Лежандра (a_k) приведены в работах [8,9]. Коэффициенты a_k путем согласования определены по методу наименьших квадратов экспериментальных данных и выражения

$$W(\theta) = A_0 [1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) + a_6 P_6(\cos \theta)].$$

Дальнейший анализ угловых распределений заключался в нахождении спинов резонансных состояний и коэффициентов смешивания по мультипольностям γ-излучения (δ) путем минимизации величины

$$\chi^{2} = \sum_{n} ((A_{0}W^{\text{reop}}(\theta_{n}) - W^{\text{sken}}(\theta_{n})) / \Delta W^{\text{sken}}(\theta_{n}))^{2},$$

где $W^{\text{reop}}(\theta_n) = \Sigma_k Q_k \rho_{k0} F_k (J_1, J_2, L, \delta) P_k$ - теоретическое угловое распределение у-квантов для перехода между начальным и конечным состояниями со спинами J₁ и $J_2, W^{\text{эксп}}(\theta)$ и $\Delta W^{\text{эксп}}(\theta)$ - экспериментальные данные с соответствующими статистическими погрешностями, А₀ - нормировочная константа, Q_k - коэффициент, учитывающий конечные размеры детектора, ρ_{k0} статистического элемент тензора, n - число экспериментальных точек (углов). Минимизация величины χ² проводилась методом линеаризации с помощью программы FUMILI. Процедура подгонки для нечетных ядер отличалась от таковой для четных ядер тем. что в этом случае параметры статистического тензора вычисляются и коэффициент смешивания по мультипольностям б остается единственным подгоночным параметром (варьируемым). Результаты анализа спектров и угловых распределений у-квантов, образующихся при распаде резонансов. составляющих изучаемые РПС, приведены в работах [8,9]. Значение четности резонансных состояний приписано на основании сравнения вероятностей электромагнитных переходов различной мультипольности с рекомендованными верхними пределами (РВП) данных величин [10]. Приведенная вероятность уо-перехода B(M1) рассчитывалась из выражения

$B(M1)=86,6b_0S(\Im B)/((2J_0+1)E_{\gamma_0}^3(M\Im B)),$

где b_0 - коэффициент ветвления для основного состояния, J_0 -спин основного состояния, $E_{\gamma 0}$ - энергия γ -перехода на основное состояние. Для состояний, у которых известны не все квантовые характеристики, приведена оценка верхнего предела величины B(M1).

Полученные распределения вероятностей магнитных дипольных у-переходов позволяют сделать что составляющие РПС резонансы вывод. принадлежат состояниям М1-резонанса как на основных, так и на возбужденных состояниях ядер ²⁷Al. ³¹**P**. ³⁷Cl. Центр тяжести МДР $(E_{IIT} =$ $\Sigma_k E_k B_k(M1) / \Sigma_k B_k(M1)$) на основных состояниях ядер ³¹P, ³⁵Cl, ³⁷Cl (рисунок) равен 9,7±0,3 МэВ, 9,1±0,1 МэВ, 10,5±0,2 МэВ соответственно и находится в области, ожидаемой для нечетных ядер с заполненной d_{5/2}-подоболочкой.

Этот экспериментальный факт свидетельствует в пользу того, что в формировании M1-резонанса в ядрах ³¹P, ³⁵Cl, ³⁷Cl принимает участие nn(pp)-пара из d_{5/2}-подоболочки, поэтому на положение ц.т. M1резонанса в этом ядре оказывает влияние величина nn

(рр)-спаривания в этой подоболочке. Ц.т. М1резонанса в ядрах ²⁵Mg, ²⁷Al [3] равен 5,8 МэВ и 6,1 МэВ соответственно и находится в области энергий возбуждения, ожидаемой для ядер с незаполненной $d_{5/2}$ -подоболочкой. Полная сила МДР (S^{M1}_{EW} = $\Sigma_k E_k B_k(M1)$) в ядрах ³¹P, ³⁵Cl, ³⁷Cl равна 10,2 МэВ μ_N^2 , 2.5 МэВµ^2 , 12.8 МэВµ^2 соответственно и сравнима с таковой в четных 4N+2n и 4N+np ядрах [2], что также, по-видимому, подтверждает вывод о том, что в формировании М1-резонанса в нечетных ядрах с заполненной d_{5/2}-подоболочкой принимает участие валентная nn(pp)-пара. S^{M1}_{EW} резонанса, наблюдаемого в (р, γ)-реакции в ядре ²⁷Al, равна 2,1 МэВ μ_N^2 и в несколько раз меньше, чем таковая для М1-резонанса с ц.т. 6,1 МэВ. Это означает, по-видимому, что более высоколежащий резонанс не связан с энергией спинорбитального расщепления.

M1-резонанс в нечетных ядрах sd-оболочки

Литература

- 1. Качан А.С. УФЖ. <u>33</u>, 989(1988).
- Качан А.С., Немашкало Б.А., Сторижко В.Е. ЯФ. <u>49</u>, 367(1989).
- 3. Endt P.M. Nucl. Phys. A521, 1(1990).
- 4. Smit J.J.A.Reinecke J.P.L. et al. Nucl.Phys. <u>A377</u>, 15(1984).
- 5. De Neijs E.O. et al. Nucl. Phys. <u>A254</u>, 45(1975).
- 6. Meyer M.A. et al. Nucl. Phys. <u>A264</u>, 13(1976).
- 7. Nooren G.L. et al. Nucl. Phys. A423, 197(1984).
- Качан А.С., Водин А.Н., Мищенко В.М., Слабоспицкий Р.П. ЯФ. <u>59</u>, 775(1996).

- Качан А.С. Водин А.Н., Мищенко В.М., Слабоспицкий Р.П.. Изв. РАН. Сер.физ. <u>62</u>, 48(1998)
- 10. Endt P.M. At. Data Nucl. Data Tables. 23, 3(1979).

Статья поступила: в редакцию 26 мая 1998 г., в издательство 1 июня 1998 г.