Раздел первый ЯДЕРНЫЕ РЕАКЦИИ

УДК 539.172

Определение отношения EMR≡E2/M1 в переходе ГN↔∆(1232) из фоторождения одиночных пионов на протоне

С.Н.Афанасьев, А.С.Омелаенко

ИФВЭЯФ ННЦ ХФТИ, г. Харьков

1. ВВЕДЕНИЕ

Реакция фоторождения пионов на нуклоне остается единственным практически источником экспериментальной информации о радиационных распадных амплитудах резонансов. Классическим объектом для исследования фундаментального взаимодействия нуклонов, пионов и у-квантов является первый нуклонный резонанс. Одним из наиболее интересных при этом оказался вопрос об электрической квадрупольной амплитуле радиационного распада $\Delta(1232)$ -резонанса, в частности, о величине ее отношения к амплитуде магнитного дипольного перехода EMR=E2/M1. Эта тензорными величина связана с силами, действующими между кварками в составе барио-нов, и рассматривется как один из немногочислен-ных тестов квантовой хромодинамики [1,2].

Целью данной работы является проведение мультипольного анализа реакций $\gamma(p,n)\pi^+$ и $\gamma(p,n)\pi^0$ в области $\Delta(1232)$ -резонанса и определе-ние EMR с привлечением экспериментальных ланных 0 дифференциальном сечении И Т-асимметрии, полученных в Бонне на ускорителе ELSA с использованием методики меченых фотонов [3] (установка PHOENICS), а также оценка влияния возможных систематических ошибок на ответ для EMR.

2. АМПЛИТУДА: ФОН И Δ РЕЗОНАНС

Для расчета реальных частей нерезонирую-щих мультипольных амплитуд в наших расчетах был учтен вклад электрического борновского приближения, дополненного полиномиальными добавками следующего вида:

$$\operatorname{Re} M_{l\pm}(E_{\gamma}) = \sum_{j=1}^{j=4} \operatorname{Re} M_{l\pm}(E_{\gamma}^{i}) \prod_{i=1;i\neq j}^{i=4} (E_{\gamma} - E_{\gamma}^{j}) / (E_{\gamma}^{j} - E_{\gamma}^{i}).$$
(1)

фотона $E_{\gamma}^{i} = 0,25; 0,30; 0,35$ и 0,40 ГэВ, выбранных в области возбуждения резонанса $\Delta(1232)$. Мнимые части фоновых мультиполей со значениями орбитального момента l>3 вводились по теореме Ватсона [4] с использованием фаз упругого π N-рассеяния [5].

Что касается резонирующих спиральных амплитуд $M_{1+}^{3/2}=A_{1+}^{3/2}$; $B_{1+}^{3/2}$, то простое сложение фона и резонанса неприменимо ввиду нарушения условия унитарности. Для унитарного слияния резонанса и фона в этих мультиполях мы воспользовались рецептом Нойля [6]:

$$M_{1+}^{3/2} = M_{1+}^{R,3/2} + B_m \cos \delta_{33} \exp(i\delta_{33}).$$
 (2)

В (2) резонансные спиральные мультиполи фоторождения М^R_±=А^R_±; В^R_± и фаза б₃₃ определялись в терминах рассмотренной в [7] резонансной модели со следующими значениями массы, полной ширины и параметра формы резонансного распределения, соответственно: $W_0 = 1,232 \Gamma 3B; \Gamma_0 = 0,120 \Gamma 3B;$ Х=0,160 ГэВ. При этом вклад резонанса контролируется значениями мнимых частей A^R_{1±} и B^R_{1±} в резонансе, исходя из которых для $\Delta_{33}(1232)$ можно значения радиационных распадных вычислить амплитуд A_{λ} со спиральностями $\lambda = 1/2$; 3/2, а также искомую величину EMR.

3. АНАЛИЗ ДАННЫХ

В сформулированной таким образом модели с учетом изотопической структуры были введены 42 свободных параметра, описывающих s-, p-волновые мультиполи и d-волновые мультиполи, подверженные влиянию второго нуклонного резонанса $\Delta(1520)$. Это значения реальных частей $A_{0+}^{1/2}$, $A_{0+}^{3/2}$, $A_{1+}^{1/2}$, $B_{1+}^{1/2}$, $A_{1-}^{1/2}$, $A_{2-}^{1/2}$, $B_{2-}^{1/2}$, функций B_A и B_B при опорных энергиях и две резонансные константы. Поиск их осуществлялся путем минимизации стандартного функционала χ^2 , составленного с привлечением

экспериментальных данных в энергетическом интервале 0,25 ГэВ $\leq E_{\gamma} \leq 0,40$ ГэВ, границы которого были выбраны так, чтобы не было необходимости учитывать специфику фоторождения в околопороговой области и свести к минимуму эффекты, связанные с рождением двух пионов.

Исходный пакет экспериментальной информа-ции состоял из N=1661 точек из [8] и последующих работ, включая [9–11] и [3]. В результате фитирования было получено независящее от выбора стартовых параметров решение 1 с общим χ^2 =5347,0 и значением на точку R= χ^2 /N=3,2. Детальное сопоставление расчетных значений наблюдаемых и результатов их измерений показал, что для дифференциальных сечений неко-

			1 uonaqu 1
Реакция	Лабор.	NL	CL
$\gamma(p,n)\pi^+$	91BONN	1,012±0,006	1,15
$\gamma(p,n)\pi^+$	76TOKY	0,937±0,004	1,19
$\gamma(p,n)\pi^+$	71LEBE	1,053±0,008	1,10
$\gamma(p,n)\pi^+$	70ORSA	0,954±0,006	2,30
$\gamma(p,n)\pi^+$	70TOKY	0,988±0,009	1,25
$\gamma(p,n)\pi^+$	67ORSA	1,060±0,005	1,26
$\gamma(p,n)\pi^0$	69ORSA	1,093±0,004	1,13
$\gamma(p,n)\pi^0$	78LEBE	1,069±0,007	1,15

			Таблица 2
Реше-	A _{1/2,}	A _{3/2,}	EMD %
ние	10 ⁻³ ГэВ ^{-1/2}	$10^{-3}\Gamma \Im B^{-1/2}$	EIVIK, 70
1	-143,4(5)	-255,7(7)	-0,73(7)
2	-144,6(5)	-256,3(7)	-0,57(7)

Рис. 1. Зависимость от E_{γ} дифференциального сечения реакции $\gamma(p,n)\pi^{+}$ при $\vartheta=90^{\circ}$.

Рис. 2. Энергетическая зависимость T-асимметрии реакции $\gamma(p,n)\pi^{\dagger}$ при $\vartheta=90^{\circ}$.

торых лабораторий значения χ^2 на точку значительно превышают 1. В связи с чем возник вопрос, в какой степени это может быть связано с возможной неточностью нормировки данных. С этой целью для данных о дифференциальном сечении ряда лабораторий были введены множители N_L , которые трактовались как дополнительные свободные параметры задачи.

После проведения нового фитирования было получено решение 2. Значения общего $\chi^2 = 3843.4$ и R=2,3 при этом оказались существенно меньшими чем у предыдущего решения. Некоторые ответы для N_L и соответствующие факторы корреляции С_L приведены в табл. 1. Решение 2 имеет также существенно лучшие парциальные (по реакциям и типам наблюдаемых) статистические характерис-тики. Найденные значения резонансных конс-тант, радиационные распадные амплитуды и отношение EMR приведены в табл. 2 (в скобках указаны ошибки, относящиеся к младшим разрядам чисел). Ситуацию с нормировкой данных о дифференциальных сечениях иллюстрирует рис.1. На расчетные значения Т-асимметрии рис. 2 сопоставлены с измерениями Харькова и Бонна.

4. ВЫВОДЫ

1) Проведен новый параметризированный s-, pволновой мультипольный анализ реакций резонанса, с определением d-волновых поправок.

2) Уточненное значение EMR=-(0,50...0,80)% согласуется с результатом [12] и предсказаниями теории цветного гипертонкого взаимодействия.

3) При определении EMR ошибка, связанная с различиями в нормировке данных о дифференциальных сечениях, в 2–3 раза превосходит оценку статистической ошибки.

Литература

1. Герштейн С.С., Джикия Г.В. ЯФ. <u>34</u>, 1566(1981).

- **2.** Isgur N. et al. Phys. Rev. <u>B25</u>, 2394(1982).
- **3.** Buchler K. et.al. Nucl.Phys. <u>A570</u>, 580(1994).
- **4.** Watson K. M. Phys.Rew. <u>95</u>, 228(1954)
- 5. Koch R., Pietarinen E. Nucl.Phys. <u>A336</u>, 331(1980).
- 6. Noelle P. Progr. Theor. Phys. <u>60</u>, 668(1978).
- **7.** Metcalf W.I., Walker R.L. Nucl.Phys. <u>B76</u>, 253(1974).
- 8. D.Menze et.al. Phys. Ins. Univ. Bonn, Germany, Physik Daten 7-1 (1977).
- **9.** Getman V.A. et al. Nucl.Phys. <u>B188</u>, 397(1981).
- **10.**Belyaev A.A. et al. Nucl.Phys. B. <u>213</u>, 201(1982).
- **11.**Беляев А.А. и др. ЯФ. <u>40</u>, 133(1994).
- **12.**Омелаенко А.С., Сорокин П.В. ЯФ. <u>38</u>, 668(1982).

Статья поступила: в редакцию 15 мая 1998 г., в издательство 1 июня 1998 г.

11