Наработка короткоживущих изотопов на ускорителе "ЭПОС" ННЦ ХФТИ для позитрон-эмиссионной томографии

Г.Л.Бочек, А.Н.Довбня, А.С.Задворный, В.И.Кулибаба, А.А.Каплий, В.Д.Овчинник, И.М.Прохорец, А.В.Торговкин, Б.И.Шраменко

ННЦ ХФТИ, г. Харьков

введение

В настоящее время в медицинских учреждениях Украины, использующих радионуклидную диагностику. сложилась критическая ситуация, обусловленная практически полным отсутствием фармпрепаратов на основе радиоактивных нуклидов (изотопов). Хотя основную часть (~80%) диагностических средств составляют фармпрепараты на основе технеция ^{99m}Tc, весьма существенная (а в ряде случаев и определяющая) роль в диагностике различного рода заболеваний отводится фармпрепаратам, меченным ультракороткоживущими (УКЖ) радионуклидами: ¹¹С, ¹³N, ¹⁵О, ¹⁸F. Указанные позитрон-активные радионуклиды широко используются во всем мире в качестве источников аннигиляционного гамма-излучения с энергией 511 кэВ в позитрон-эмиссионных томографах (ПЭТ). Неоспоримым достоинством ПЭТ-методики, использующей УКЖ-изотопы, является то, что, обеспечивая работу электронной аппаратуры с высокими загрузками (10⁵ 10⁶ сек⁻¹), достигается высокое пространственное разрешение и низкий уровень радиационного воздействия на пациента (доли рад), а сама процедура обследования длится несколько минут. В связи с возрастающим интересом к ПЭТ-методике и принимаемыми усилиями по созданию в ННЦ ХФТИ томографа целесообразно изучить возможности наработки УКЖ-радионуклидов на имеющихся линейных ускорителях электронов ННЦ ХФТИ. Настоящая работа предпринята именно с этой целью. Необходимо было в условиях работы ЛУЭ-20 ("ЭПОС") получить данные о величинах удельных активностей УКЖ-изотопов, нарабатываемых на конкретных мишенях.

МЕТОДИКА ОБЛУЧЕНИЯ ОБРАЗЦОВ ДЛЯ Наработки радионуклидов

В качестве мишеней для наработки использовались следующие вещества: дистиллированная вода H_2O (в стеклянных ампулах по 2 см³ медицинского назначения), порошки борной кислоты H_3BO_3 и нитрида бора BN, пленки тетраполифторэтилена (фторопласта) (C_2F_4)_n, углерода (графита) реакторной чистоты и пленок полиэтилена (C_2H_2)_n. Мишени-

образцы собирались с общую сборку размером 25×40 мм², которая устанавливалась на пучок электронов на расстоянии 70 см от выходной фольги ускорителя непосредственно за свинцовым конвертором толщиной 2 мм. Специально для этих работ на ускорителе ЭПОС создавался следующий режим облучения:

энергия электронов – 25 МэВ; частота сканирования – 3 Гц; импульсный ток – 500 мА; площадь развернутого пучка – 80×300 мм²; длительность импульса – 4 мкс; частота посылок – 150 Гц; время облучения – 10 мин.

МЕТОДИКА ИЗМЕРЕНИЯ НАВЕДЕННОЙ АКТИВНОСТИ ОБРАЗЦОВ

Определение удельной активности производилось путем измерения на спектрометрическом стенде числа гамма-квантов в пике фотопоглощения от облученных образцов известного химического состава и веса при известной плотности тока ускоренных электронов в месте расположения конвертора. Спектрометрический стенд оснащен Ge(Li)-детектором типа ДГДК-50 1А объемом 50 см³ или сцинтилляционным детектором на базе кристалла NaI(Tl) размерами Ø63×63 мм промышленного изготовления. Энергетическое разрешение первого детектора составляет 3,8 кэВ (по линии 511 кэВ), второго – ≈8% по линиям Со⁶⁰. Спектрометрический канал включал предусилитель БУСи-57, усилитель типа 1101 в стандарте КАМАК спектрометрический усилитель или БУС-2-47, амплитудно-цифровой преобразователь типа 712 в КАМАК. Регистрация стандарте И обработка набранных спектров производилась с помошью компьютера IBM PC 386-DX.

Для определения удельной наработанной различных изотопов были выбраны активности реакции (γ ,n) на ядрах O¹⁶, N¹⁴, F¹⁹ и C¹². Облученные образцы помещались на расстоянии 35 мм от поверхности детектора. Мертвое время спектрометра определялось по стандартной методике двух источников и было равно τ=33 мкс. После обработки экспериментально всех набранных спектров проводилось построение кривой распада по значениям

суммы под пиком фотопоглощения. С целью минимизации погрешностей был использован метод наименьших квадратов, позволяющий приближать данные эксперимента кривой вида $A=A_0 \cdot \exp(-\lambda t)$, где λ - постоянная распада, t- время с момента окончания облучения, A_0 - активность на момент конца облучения. Учет просчетов проводился по следующей формуле:

$$N_0 = N/(1 - N_s(\tau/t_1)),$$
 (1)

где N– число фотонов в фотопике, зарегистрированное детектором, N_0 – число фотонов с учетом просчетов, N_s – полное число импульсов в спектрометрическом канале, τ – мертвое время спектрометра, t_1 -время набора спектра.

Погрешность величины N₀ складывается ИЗ погрешности определения суммы под фотопиком σ_{n0} , погрешности, вносимой конечным временем набора И погрешности, обусловленной спектра σ_{t1} фона σ_f. Суммарная погрешность вычитанием определяется как среднеквадратичная от всех составляющих. Основной вклад в общую погрешность вносят σ_{n0} и σ_{f} . Для изотопов с периодом полураспада, сравнимым со временем набора (30 – 50 с) погрешность σ_{t1} должна учитываться.

На рисунке в качестве иллюстрации приведена кривая распада изотопа ¹⁵О.

Представляет интерес сравнить полученные данные с расчетами [1,2]. Сравниваемые результаты представлены в таблице 1 и показывают, что полученные данные по наработке УКЖ-изотопов (приведенные ко времени облучения, достаточному для насыщения) находятся в разумном согласии с расчетами.

			Таблица 1	
Изо–топ	Удельная активность, Бк/г мкА			
	при 25 МэВ			
	Мак		Наш	
	Грегор [1]	Лутц [2]	эксперимент	
			(до насыщения)	
¹¹ C	$7.5 \cdot 10^{6}$	$0.8 \cdot 10^{6}$	$2.25 \cdot 10^{6}$	
¹³ N	3.106	$1.4 \cdot 10^{6}$	3.36.106	
¹⁵ O	$1.85 \cdot 10^{6}$	1.10^{6}	$2.5 \cdot 10^{6}$	
¹⁸ F	$1.85 \cdot 10^{6}$	$0.75 \cdot 10^{6}$	1.107	

В таблице 2 приведены сравнительные данные по наработке изотопа ¹⁵О на различных ускориелях. Из таблицы 2 видно, что на ускорителе ЭПОС в 200 см³ воды за 10 минут нарабатывается изотопа ¹⁵О в 26 раз больше, чем требуется на обследование одного пациента. Приведенные данные показывают возможность наработки медицинских изотопов на ускорителях ННЦ ХФТИ.

Работа выполнена при поддержке фонда УНТЦ, проект № 285 и проекта INTAS LA-96-09.

			Таблица 2
	ЛУ "Факел" ИАЭ им.	ЛУ-30 МэВ, Центр	ЛУ–ЭПОС ННЦ ХФТИ,
Ускоритель	И.В. Курчатова,	ядерной медицины,	г. Харьков,
	г. Москва, Россия	г. Цинцинати, США	Украина
	Е₀=30 МэВ	Е₀=26 МэВ	Е₀=25 МэВ
Условия облучения	I _{ср} =100 мкА	I _{ср} =100 мкА	I _{ср} =300 мкА
образцов	Т _{обл} = 7 мин	Т _{обл} =4 мин	Т _{обл} = 10 мин
	$V = 200 \text{ cm}^3$	$V = 500 \text{ cm}^3$	V= 200 см ³
		<i>Ø</i> 6см × 18 см	
Интегральная			
активность на	700 мКи	184 мКи	130 мКи
момент окончания			(пересчет из 1 см ³)
облучения			

Литература

- 1. M.H. Mc. Gregor. Nucleonics. <u>15</u>, № 11 (1957).
- Статья поступила: в редакцию 15 мая 1998г., в издательство 1 июня 1998г.
- 2. G.J. Lutz. Anal . Chem. <u>41</u>, 425 (1969).