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INTRODUCTION
For  many  problems  of  forming,  acceleration 

and focusing charged particles it is need to create non-
uniform axially  symmetric  stationary  magnetic  fields 
with  specified  dependence  on  longitudinal  coordinate 
within  the  given  accuracy.  Usually  such  fields  are 
created  by  sectional  solenoids  consisted  of  coaxially 
located  sections  (coils).  The  magnetic  field  intensity 
created  by  each  section  depends  on  its  parameters 
generally  nonlinearly.  The  parameters  to  be 
manipulated are geometrical dimensions of the sections, 
their mutual location (the section coordinates), current 
density, etc.

In  previous  works  related  to  the  above-
mentioned problem, the sections’ current densities were 
used as some unknown parameters. This is the simplest 
way to solve the problem of parameters since current 
density  is  a  linear  parameter  of  the  equation  for  a 
solenoid magnetic field intensity. The method proposed 
in [1]  is based on a functional minimization allowing to 
determine the optimum (in sense of minimum standard 
deviation  of  created  field  from required  one)  current 
density  distribution  in  all  sections  of  the  solenoid. 
However,  if  the  number  of  sections  is  large  enough 
(more  then  20),  the  set  of  the  linear  equations  –  the 
problem  reduced  –  becomes  mal-conditioned  which 
leads to a loss of accuracy in the calculations needed. 
Hereupon,  the  load  distribution  among  the  sections 
appears  to  be far  from the  optimum desired.  Current 
loading to the edge sections turns out to be many times 
as large as that of all the others, resulting in thriftless 
consumption  of  magnet  wire  and  necessity  of  forced 
cooling  the  outside  sections.  Power  supply  of  the 
solenoid is also complicated since setting up the current 
density distribution among the sections requires either 
to have an individual power source for each section or 
to place a rheostat along with each section.

In  this  work  the  more  complex  problem  is 
solved  by  means  of  using  Tikhonov′s  regularization 
method [2]: the sections parameters of a specific kind 
are  calculated.  These  can  be  for  example  a  winding 
thickness, length or a section internal radius etc., i.e. the 
values  of  magnetic  field  intensity  are  depending, 
generally speaking, in the nonlinear way. The method 
described here is illustrated by solving the problem in 
case of defining the winding thickness for a solenoid 
with rectangular cross-sections.

THEORY
Let  us  consider  a  sectional  solenoid  of  n 

coaxial sections with an arbitrary cross-section.  It  is 
necessary to create a magnetic field at the solenoid axis 
in an interval [a, b] within the given accuracy δ, when 
the  field  intensity  is  prescribed  by  a  function  f(z). 
Assume that field intensity, created by the  i-th section 
at  the  point  ,  is  described  by  the  function  Hi(Ni, z), 
which  in  turn  depends  on  a  cross-section  of  the 
geometrical configuration, its size and location towards 

the measuring point. Then magnetic field created by the 
solenoid  on  its  axis  can  be  formulated  as 
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to the class of incorrect ones in sense that within given 
accuracy it has not single-valued solution; moreover, if 
a  sections’  number  is  large  enough,  its  solution 
becomes  unstable  towards  small  variations  of  initial 
data. So, from a set of solutions matching  ( ) δ≤ρ fB,  
where δ is a given number, one has to pick up the only 
solution  optimized  on  a  certain  criteria  (a  solenoid 
volume or power consumption can serve as such). The 
problem is formulated as follows: to find an optimum 
set  of  parameters  (N1, N2,..., Nn)  under  which  the 
functional
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reaches its greatest lower bound [2]. Here Ω(N1,...Nn) is 
stabilizing  functional  determined  by  the  optimization 
criteria,  β is  a  parameter  of  regularization.  The 

conditions,  under which  
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to a set of nonlinear equations:
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that,  in  turn,  can  be  solved  by  one  of  the  gradient 
methods (see [3 ]).

CALCULATIONS
Solution  of  the  problem  on  solenoid 

calculation  includes  following  stages:  1)  choice  of 
values determined by a device parameters, heat removal 
conditions  and  other  factors;  2)  choice  of  initial 
estimates for both 0

iN  and the regularization parameter 
β to be ensured that an iterative process converges; 3) 
solving the set of equations (1) within given accuracy; 
4)  updating of the initial  estimate (current  value of a 
desirable parameter is accepted as such) and that of the 
parameter  β (if  the  iterative  process  converges  too 
slowly,  β would decrease); 5) repeated solving of (2) 
until a satisfactory result has been found.

In  this  section  the  method  offered  has  been 
used in  case  of  a  homogeneous magnetic  field  to  be 
produced by a solenoid built of coils with rectangular 
cross-section. As a desirable parameter  Ni the winding 
thickness di = Ri - ri has been accepted. In this case the 
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approximating  functions  Hi(di, z)  and  their  first 
derivatives are:
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where Ji is the current density [GS]; ζi is the section left 
edge coordinate [cm]; ri is the section inner radius [cm]; 
Ri is its outer radius [cm]; ai is the length of the section 
[cm]; c is the light velocity [cm/s].

As a  stabilizing  functional  the square  of  the 
solution  Euclidean  norm  have  been  used: 
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initial value of the  i-th section parameter to be found. 
Such  choice  actually  corresponds  to  the  criteria  of 
minimum space of wire the solenoid is wound by. As a 
pattern  to  be  calculated  we  picked  up  the  solenoid 
design described in [1] , where the problem of current 
density  definition  had  been  solved  under  β = 0.  The 
solenoid length is equal to 727 mm, its inner radius is 
85 mm. Current density is the same through all sections 
and equal to 2 A/mm2. A homogeneous magnetic field 
of intensity  f(z) = 1 kOe is created along the length of 
436  mm  (60%  of  the  solenoid  length).  The  set  of 
equations (2) was solved by the Newton method under 
following  initial  values  of  parameters:  the  winding 
thickness was 0

id = 0 for all sections, the parameter of 
regularization  β was  altered  from 105 to  0,  absolute 
accuracy  of  winding  thickness  calculated  value  was 
ε = 10-4 cm  (i.e.  the  iterative  processes  were  to  stop 
when β = 0 and the next correction to di was less than ε 
for  all  the  sections  taken  into  account).  The 
regularization parameter  β was modified by means of 
its dividing to a constant factor k = 2 in the course of its 
gaining the accuracy prescribed, and it was made equal 
to zero when getting the value below β = 10-10.

The Table 1 shows the meanings of the mean-
square deviation ρ(B, f), maximum of the relative 
deviation ( ) ( )( ) ( )zfzfzB −=∆ max  and volume 
of the conductor with which the solenoid is reeled up 
when being splitted into various number of sections m. 
The figures for the value, which is inversely 
proportional to the conditioned number 
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to the last iteration are also given. As we can see from 
the Table, upon improvement of the field 
approximation the solenoid volume (and weight) tends 
to grow.

Table 1.
m ρ, Oe⋅cm1/2 ∆ V, cm3 1/cond A
4 18.1 1.09⋅10-2 2.12⋅104 8.22⋅10-2

6 3.13 2.16⋅10-3 2.19⋅104 4.74⋅10-3

8 0.549 4.31⋅10-4 2.26⋅104 1.67⋅10-4

10 8.56⋅10-2 7.50⋅10-5 2.35⋅104 3.95⋅10-6

12 1.16⋅10-2 1.10⋅10-5 2.50⋅104 6.64⋅10-8

14 1.24⋅10-3 1.29⋅10-6 2.80⋅104 9.57⋅10-10

16 1.19⋅10-4 1.32⋅10-7 3.34⋅104 1.40⋅10-11

18 1.38⋅10-5 1.47⋅10-8 4.20⋅104 2.00⋅10-13

18 4.13⋅10-3 5.63⋅10-6 2.41⋅104 1.56⋅10-8

It should be noted that as far as the 
regularization parameter final figure gets equal to zero, 
these results correspond to the best magnetic field 
approximation in sense of the lowest root-mean-square 
deviation. However, the results like that cannot always 
be taken as satisfactory. For example, the Fig. 1 
pictures a magnetic field design for the solenoid with 18 
coils, m = 18 (as the solenoid is symmetric, only a half 
of it is shown). As we see from the picture, the edge 
sections manufacturing would most likely be a toilsome 
affair, and the magnetic field approximation of such 
accuracy as 10-8 in most cases is hardly required.
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Fig. 1.
In order to optimize the solution towards both 

parameters – accuracy of a magnetic field 
approximation and the solenoid volume – the iterative 
process was terminated when a root-mean-square 
discrepancy ρ(B, f) reached value of δ = 4⋅10-3. The 
relative error of the field approximation thus amounted 
to ∆ = 5.63⋅10-6, as the solenoid volume got to V = 2.41⋅
104 cm3. These results are shown in the bottom line of 
Table 1, and the solenoid optimum configuration 
corresponding to the solution being found is pictured in 
Fig. 2. It goes without saying that the solution of ours is 
not optimum in sense of the lowest root-mean-square 
deviation, however it has allowed to reduce both 
dimension of edge sections and almost twice – volume 
of the solenoid as a whole.
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Fig. 2.
Let us note that current density in all sections 

was installed identical that excludes the edge sections 
overloading.  Due  to  this,  magnet  wire  might  be 
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consumed more rationally and the power consumption 
be  reduced in  comparison with solenoids  of  different 
kind where a required magnetic field is provided by the 
proper current density distribution over sections. Power 
supply of the solenoid might also be simplified as, at 
common  current  for  all  sections,  they  could  be 
connected  in  series  and  fed  up  by  a  common power 
source.  All  this  eventually  determines  the  solenoid 
dimensions, weight and cost.

APPLICATIONS
As an  example,  let  us  consider  the  results  of 

modeling a concrete solenoid with prescribed magnetic 
field  distribution  on  its  length.  The  appropriate 
calculations had been carried out within a work on two-
beam electron-ion accelerator  design [5] and working 
out  of  adiabatic  plasma  lenses  designed  for  5 MeV 
proton beam focusing [6].

Two-beam electron-ion accelerator. To ensure 
electron-cyclotron resonance happening inside a 
resonator for a wave excited by a driving electron beam 
with natural oscillations of a non-uniform slow-wave 
structure, it is necessary to place the resonator in a non-
uniform magnetic field, the diagram of which is shown 
in a Fig. 3. The relative accuracy of a field 
approximation ∆ should be less than 1%.
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Fig. 3.
The configuration of solenoid creating a field 

in need, is shown in Fig. 4. Its main parameters are as 
follows: length- 200 cm, internal radius- 39 cm, 
sections length -10 cm, number of sections- 15, average 
current density over the winding cross-section –
2 A/mm2. The parameter to be calculated was thickness 
of winding. The field approximation relative error has 
not exceeded ∆ = 10-3 over length of 140 cm, i.e. 70% 
of the solenoid length.
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Fig. 4.
Adiabatic  plasma  lens.  In  devices  like  this  a 

radius of the focusing current channel is determined by 
an external magnetic field topography. For the greater 
efficiency  of  a  current  lens  a  focused  proton  beam 
should  fill  a  focusing  current  channel  as  good  as 
possible. To this effect one has to create such external 

magnetic field over the device length that the focused 
protons  trajectories  would  coincide  with  its  magnetic 
lines of force. The diagram of such field is shown in 
Fig. , and configuration of the solenoid creating it is in 
Fig. .  Its  main  parameters  are  as  follows:  length  – 
114 cm, internal radius – 10 cm, length of each section 
– 11.5 cm, number of the sections – 10, average current 
density over cross-section of winding – 2 A/mm2. The 
parameter  to  be calculated was thickness of  winding. 
The  relative  error  of  the  field  approximation has  not 

exceeded  ∆ = 2.48⋅10-3 over  the  length  of  80 cm,  i.e. 
70 % of the solenoid length.
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