ANALYSIS OF THE MULTIPOLe TRANSITIONS IN THE REACTION $^{12}\text{C}(\gamma, 3\alpha)$

V.N. Gar’ev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine

We obtained the relations for the amplitudes of the $E1 \rightarrow P1$, $M1 \rightarrow D1$, $E2 \rightarrow D2$-transitions at the two-cluster (α-$^8\text{Be}(2^+)$) photodisintegration of the ^{12}C nucleus from the analysis of the experimental data for $\Sigma(90^\circ)$-asymmetry and the α-particle angular distributions in the reaction $^{12}\text{C}(\gamma, 3\alpha)$ at energies of the linearly polarized photons 15.8-33.5 MeV.

PACS:23.20.Js.

Interest to the investigation of the $^{12}\text{C}(\gamma, 3\alpha)$ reaction is connected with the possibility of checking the α-cluster model for the ^{12}C nucleus and the two-particle mechanism of the photodisintegration with the production of the $^8\text{Be}(2^+)$ nucleus in the intermediate state [1]. The problems are the interpretation of the structure in the energy dependence of the total cross-section of the reaction in the photon energy region $E_\gamma=10-38$ MeV and the mechanism of the increased emission of the primary α-particles at an angle of 90° for some energy values imitating the forbidden $E1$-transition with $\Delta T=0$, where T is the isospin.

The possibility of estimating the relations of the multipole transitions became possible due to the publication of the experimental data about the angular distributions [2] and the energy dependence of $\Sigma(90^\circ)$-asymmetry of the output of α-particles for the energies of the linearly polarized photons 15.8-33.5 MeV [3].

To perform the analysis of the experimental data [2,3] we have made the multipole expansion of $\Sigma(90^\circ)$ for two-particle photodisintegration of the ^{12}C nucleus with the production of the $^8\text{Be}(2^+)$ nucleus. In the approximation of the contribution of the $E1 \rightarrow P1$, $M1 \rightarrow D1$ and $E2 \rightarrow D2$-transitions we have obtained that $\Sigma(90^\circ)$=a/b, where

$$a=0.45 \left| E_{12} \right|^2 +2.25 \left| M_{12} \right|^2 +2.69 \left| E_{22} \right|^2 +2.83 \text{Re}(M_{12}^*E_{22}) ,$$

$$b=3.15 \left| E_{12} \right|^2 +2.25 \left| M_{12} \right|^2 +4.47 \left| E_{22} \right|^2 +2.83 \text{Re}(M_{12}^*E_{22}) ,$$

(1)

E_{12} and M_{12} are the electric and magnetic multipole amplitudes; J, L, S are, respectively, the total momentum, the orbital momentum and the spin. In [2] using the method of the lowest squares the angle distributions of the primary α-particles was fit to the form of the series

$$d\sigma/d\Omega = \sum_{n=0}^{2} C_n \cos^n \theta .$$

(3)

In this approximation the interpretation of the experimental data was limited to the decomposition

$$d\sigma/d\Omega = \sum_{n=0}^{2} A_n P_n(\theta) ,$$

(4)

where $P_n(\theta)$ is Legendre polynomial.

In the approximation (3)

$$C_0=3.15 \left| E_{12} \right|^2 +2.25 \left| M_{12} \right|^2 +5.4 \left| E_{22} \right|^2 +2.83 \text{Re}(M_{12}^*E_{22}) ,$$

$$C_2=-7 \text{Re}(E_{12}^*M_{12}) +6.2 \text{Re}(E_{12}^*E_{22}) ,$$

(5)

$$C_3=-0.45 \left| E_{12} \right|^2 +2.25 \left| M_{12} \right|^2 +1.2 \left| E_{22} \right|^2 +8.85 \text{Re}(M_{12}^*E_{22}) .$$

(7)

In contrast to C_1 in (3), it is possible to exclude from Eq. (1), (2), (7) the interferential term $\text{Re}(M_{12}^*E_{22})$.

Taking into account the interpolation between the experimental values for $C_{20}=C_{22}$ [2] and for $\Sigma(90^\circ)$ [3] at $E_\gamma=15.8; 26; 28; 33.5$ MeV we have obtained the following relations

$$\left| M_{22} \right|^2 =0.23 \left| E_{12} \right|^2 +2.43 \left| E_{22} \right|^2 ,$$

(8)

$$\left| E_{22} \right|^2 =0.15 \left| E_{12} \right|^2 +0.53 \left| M_{12} \right|^2 ,$$

(9)

$$\left| E_{22} \right|^2 =1.1 \left| E_{12} \right|^2 +1.58 \left| M_{12} \right|^2 ,$$

(10)

$$\left| M_{22} \right|^2 =0.26 \left| E_{12} \right|^2 +0.65 \left| M_{12} \right|^2 ,$$

(11)

$$\left| M_{22} \right|^2 =0.70 \left| E_{12} \right|^2 +4.85 \left| E_{22} \right|^2 ,$$

(12)

$$\left| M_{22} \right|^2 =-0.74 \left| E_{12} \right|^2 +0.51 \left| E_{22} \right|^2 ,$$

(13)

for $E_\gamma=15.8$ MeV, $\Sigma(90^\circ)=0.26$, $C_{20}=0$; $E_\gamma=19$ MeV, $\Sigma(90^\circ)=0.26$, $C_{20}=0$; $E_\gamma=26$ MeV, $\Sigma(90^\circ)=0.36$, $C_{20}=0$; $E_\gamma=27$ MeV, $\Sigma(90^\circ)=0$, $C_{20}=0$; $E_\gamma=33.5$ MeV, $\Sigma(90^\circ)=0.75$, $C_{20}=1.8$; $E_\gamma=33.5$ MeV, $\Sigma(90^\circ)=0.5$, $C_{20}=1.8$ respectively.

At $E_\gamma=33.5$ MeV, $\Sigma(90^\circ)=0.5$, $C_{20}=1.8$ a mathematical incorrect expression for the multipole amplitudes arises.

Thus we have demonstrated the principle possibility of getting in such an approach of the quantitative relations for the squares modulus of the amplitudes of the $E1 \rightarrow P1$, $M1 \rightarrow D1$ and $E2 \rightarrow D2$-transitions. From Eq. (9) - (11) for 19$<E_\gamma<$27 MeV, where $\Sigma(90^\circ)=0$, it follows that $E2 \rightarrow D2$-transition dominates. From Eq. (12) for 28$<E_\gamma<$33.5 MeV the $M1 \rightarrow D1$-transition dominates. For the latter case this also follows from the form of the α-angular distribution $d\sigma/d\Omega$ [2].

REFERENCES

2. R.A. Golubev, V.V. Kirichenko. A.S. Kostromin α-particle angular distributions in the reactions γ $^{12}\text{C}\rightarrow 3\alpha$ and γ $^{14}\text{O}\rightarrow 4\alpha$ // Yad. Fiz., 1997, v. 60, N 9, p. 1572-1579 (in Russian).