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Conditions for thermonuclear ignition of deuterium-tritium (DT) gas by a focusing ideally symmetric shock 
wave are estimated.  The wave is focused to the center and then reflects. In so doing a higher-pressure zone is 
produced following the front of the shock wave reflected from the center; if the wave is intensive enough, the DT 
gas thermonuclear ignition can occur in the zone. The ignition criterion can be written as 122

000 ≥urρ , where ρ0 is 
initial DT gas density, [ρ0] = g/cm3, u0 is mass velocity following the converging shock wave front of radius r0, [r0] = 
cm, [u0] = 107 cm/sec.
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The preceding paper of this issue [1] demonstrates 
the expediency of development of double-pulse lasers 
for studying the thermonuclear laser target performance 
based on moderate fuel pre-compression and subsequent 
ignition  of  the  center  by  the  focusing  shock  wave. 
Purpose  of  this  communication  is  to  estimate  the 
conditions  for  thermonuclear  ignition  of  deuterium-
tritium (DT) gas by a focusing ideally symmetric shock 
wave.

A focusing spherical  shock wave in  homogeneous 
gas with adiabatic exponent γ tapers off to a self-similar 
regime near  the  focusing  center  [2].  This  means that 
density  ρ,  mass  velocity u,  and sound speed c in  the 
shock-compressed material can be expressed as
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where  ρ0 is initial gas density (density before the front 
of  the converging shock wave),  r  is  radius,  t  is  time, 
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ξ0 is  a  constant,  m  is  a  constant  dependent  on  the 
equation of state of gas following the shock front. For 
DT  mixture,  which  we  consider  as  ideal  completely 
ionized  gas  with  adiabatic  exponent  γ=5/3  (following 
the wave front near focusing), m is ([2]):

m = -1,45268.  (3)

Evaluate ξ0. To do this, note that at the front of the self-
similar converging shock wave [2]:
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Conditions  for  thermonuclear  ignition  of  deuterium-
tritium (DT) gas by a focusing ideally symmetric shock 
wave are estimated. The wave is focused to the center 
and then reflects. In so doing a higher-pressure zone is 
produced  following  the  front  of  the  shock  wave 
reflected  from  the  center;  if  the  wave  is  intensive 
enough, the DT gas thermonuclear ignition can occur in 
the zone. The ignition criterion can be written as

122
000 ≥urρ ,

where ρ0 is initial DT gas density,  [ρ0] = g/cm3,  u0 is 
mass  velocity  following  the  converging  shock  wave 
front of radius r0, [r0] = cm, [u0] = 107 cm/sec. Here u0 is 
mass  velocity  following  the  converging  shock  wave 
front of radius r0. From relations (1) and (4): 
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Estimate pressure P and temperature T in the material 
compressed by the self-similar shock wave:

ρ
γ Pc =2 (6)

Hence,
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Having used the equation of state for completely ionized 
ideal DT gas,

T
A

NkP ρ2= , (8)

where N = 6,02·1023  is Avogadro number, k=1.38 10−16 

erg/deg = 1.602 · 10-9  erg/keV is Boltzmann constant,A 
is average atomic weight of DT gas (if the number of 
deuterium atoms, D, is equal to that of tritium atoms, T, 
then A=2.5), we find 
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By expressing velocity u0 in terms of 107 cm/sec and 
temperature,  T,  in terms of  keV,  we should take k = 
1.602 · 10-9 (10-7)2 = 1.602 · 10-23  in the formula.

Estimate  the  self-similar  shock  wave  front 
velocity. At the wave front,  τ = const; hence, from (2) 
we obtain
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To  find  out  the  conditions,  under  which  the  DT gas 
thermonuclear ignition by the shock wave is possible, it 
is  necessary  to  include  the  heat  losses  and 
thermonuclear energy release. We are interested in the 
conditions  that  ensure  the  gas  ignition  following  the 
front of the shock wave reflected from the center for the 
least wave intensity. The thermonuclear energy release 
at  the  converging shock  wave front  can  be  therewith 
neglected.  In  any  case,  additional  energy  can  only 
strengthen  the  converging  wave.  In  contrast,  the  heat 
losses can attenuate the converging wave in comparison 
with the self-similar one. If the heat losses are small, the 
wave may be considered the self-similar wave as before. 
It can be shown that the heat losses due to radiation can 
be neglected for the converging spherical shock wave, if 
the shock-wave intensity,  u1=ur-(m+1) (where  u is  mass 
velocity following the converging wave front of radius 
r; for the self-similar wave this value is constant, that is 
independent on the front radius r and equal to the mass 
velocity for wave radius r=1 cm), meets condition 
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We  will  consider  the  condition  met.  Electron  heat 
conduction can be neglected, if the temperature at the 
converging shock wave front is not higher than
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We will consider the condition as met too.
Now consider gas volume, V, behind the front 

of the shock wave reflected from the center and write 
the law of conservation of energy for that volume with 
account for heat losses and thermonuclear reaction:
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d −−+=+  (13)

Here E is internal energy of the gas:
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Ek is kinetic energy of the gas:
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A is work per unit time done by pressure forces on gas 
with taking into account the energy contributed to the 
volume along with the material through the shock front:
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where r is radius, D is reflected shock front velocity; all 
the  quantities  are  taken  at  the  shock  front;  ET is 
thermonuclear energy released in gas volume V per unit 
time:
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where  f(T) is  thermonuclear  DT-reaction rate  [2],  for 
which the following interpolation relation is valid:
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[ ] ( )[ ] sec/10, 37 cmTfkevT ==
ε is  energy released in  DT gas  in  one thermonuclear 
reaction  event:  ε  =  2.83 1910 −⋅  in  units  of  1014 erg  = 
10 MJ, φ and q are functions including thermonuclear 
alpha particle and neutron escape from volume V; for 
homogeneous spherical volume the functions have been 
determined by E. Pavlovskii:
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Eu is  energy  lost  by  the  gas  due  to  bremsstrahlung 
(volume  V  under  discussion  is  assumed  to  be 
transparent to bremsstrahlung): 
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Ee is  the energy lost  by the  gas  in  volume V due to 
electron heat conduction, which can be written as 
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where ae = 2·10-2, [Ee] =1014 erq/10-7 sec=10 MJ/10-7 sec, 
xe is a correction factor that includes proper temperature 
distribution over radius.

Having introduced the relevant profile factors for the 
other quantities (14,15,17,20), write them as
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The values at the front of the shock wave reflected from 
the center appear in all relations (21 and 22).

Eq. (13)  serves  for  determining  temperature  T 
following the front of the shock wave reflected from the 
center with account for heat losses and thermonuclear 
reaction. Density,  ρ, mass velocity, u, and velocity, D, 
of the front of the shock wave reflected from the center 
also appear in this equation. All the values, with taking 
into  account  heat  losses  and  thermonuclear  reaction, 
generally speaking, differ from those at the front of the 
self-similar  shock wave reflected from the center.  To 
determine  them  accurately,  besides  Eq. (13),  the 
equations  of  conservation  of  mass,  momentum,  and 
energy at the front of the (not self-similar) shock wave 
reflected  from  the  center  can  be  used.  The  relevant 
values before the front of the shock wave reflected from 
the  center,  that  is  behind the  converging shock wave 
front,  appear  in  the  equations.  We  consider  the 
converging  wave  to  be  self-similar,  as  both 
thermonuclear energy release and heat losses for it can 
be neglected, and conclude that all the values before the 
front of perturbed shock wave (with taking into account 
heat  losses  and  thermonuclear  energy)  depend  on  a 
single self-similar parameter,  τ, for which the relevant 
equation  can  be  obtained.  This  equation  along  with 
Eq. (13) solves the set-up problem of estimation of all 

physical  quantities  following  the  front  of  the  shock 
wave reflected from the center with taking into account 
heat  losses  and  thermonuclear  energy  release.  It  is 
convenient  to  write  Eq. (13)  for  temperature  and  the 
equation  for  self-similar  parameter  τ in  the 
dimensionless  form.  To  do  this,  take  unperturbed 
temperature  at  the  front  of  the  shock  wave  reflected 
from  the  center,  that  is  self-similar  temperature  (9) 
(instead of t), for the argument, where by τ is meant the 
value at the front of the self-similar wave reflected from 
the center:

)3/5(558.11 =−== γττ for  (23)
Hereinafter we use the self-similar exponent m, self-

similar  variable  τ,  and  functions  )(),(),( τττδ CU  
determined  for  adiabatic  exponent  γ =  5/3  by 
Yu.D. Bogunenko and E.A. Karpovtsev.

The  equation  for  τ will  be  therewith  written  in 
simple form:
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where Q is some dimensionless function, which velocity 
D (10) of the self-similar shock wave reflected from the 
center  [with  τ =  τ1 (23)]  has  to  be  multiplied  by  to 
obtain the perturbed shock wave velocity.

To  transform  Eq. (13)  to  variable  Ta,  take  into 
consideration relations (9) and (10), then: 
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Here  we  simplify  the  problem  by  assuming  that  the 
ignition  occurs  at  temperature  T  close  to  self-similar 
temperature  Ta and  take  the  values  of  all  other 
parameters at the front of the self-similar shock wave 
reflected from the center. Then, in particular, function Q
≡1; from Eq. (24) it follows that τ = cosnt = -1.548 (the 
value before the reflected self-similar wave front); the 
relevant values of the self-similar functions are
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at the reflected self-similar wave front.
Eq. (13) along with expressions (16,21,22) as well as 

(5  and  8)  with  taking  into  account  (25)  and  (26)  is 
transformed  to  the  following  equations  for  perturbed 
temperature T:
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which depends on parameter β:
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and  weakly  depends  (in  the  logarithmic  manner)  on 
initial density ρ0.

Coefficient xE is expressed in terms of xk from the 
condition that for the unperturbed case, where T≡Ta, and 

,0=== Teu xxx  Eq. (27)  should  be  satisfied 
identically.

Eq. (27)  without  inclusion  of  heat  losses  and 
thermonuclear  energy  release  (when 

)0=== Teu xxx  is written as
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Clear that for T=Ta the condition

a1-a2 =1  (30)

is met.
Eq. (29) with taking into account (30) has solution
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Hence, with decreasing Ta (that is with increasing time) 
the perturbed temperature T will tend to the unperturbed 
Ta, if a1>1. In fact:
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that is tendency aTT →  will proceed quite slowly. If 
the initial values of T and Ta are the same (T0 =Ta0), then 
T=Ta.

Since  by  the  ignition  is  meant  a  situation,  where 
temperature  T  behind  the  front  of  the  shock  wave 
reflected  from  the  center  begins  to  increase  (with 
decreasing  self-similar  temperature  Ta),  it  can  be 

considered  that  
adT

dT
 vanishes  at  the  ignition  time. 

Having  assumed  that  the  perturbed  temperature  T  is 
therewith  the  same  as  the  unperturbed  (self-similar) 
temperature Ta, from Eq. (27) with taking into account 
(30)  we  obtain  the  equation  for  determining  ignition 
temperature T-=Ta:
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From this equation we can find (for example, with 
the method of trials) the value of T such, with which the 
value of β will be minimal. This minimal value of β is 
just the critical value of the parameter, with which the 
ignition occurs, and the relevant value of T determines 

the ignition temperature. The critical values of β and T 
depend  on  the  profile  factors  zk,  xu,  xe,  and  xr.  In 
particular,  with  unit  values  of  the  profile  factors  the 
critical values of β and T are equal:

keVT 5.8~;2.1~ −−β . (34)
A change in the initial gas density,  ρ0, leads only to a 
slight change in the term that includes the gas electron 
heat conduction and is equivalent to some change in the 
profile factor xe.  Eq. (27) with parameter  β,  minimum 
necessary for the ignition, gives the dependence of T on 
Ta: if at the initial time T0=T0a, then with decreasing Ta 

the value of T first becomes less than Ta (due to heat 

losses),  with  some  T=Ti (ignition  temperature)  
odT

dT

vanishes,  and  then  (with  further  decrease  in  Ta) 
temperature T begins to increase due to thermonuclear 
energy, which is just responsible for the DT gas burst. 
With  β less  than minimal necessary no increase in T 
with decreasing Ta is observed and no ignition occurs. 
The minimum value of  β, with which T still increases 
with decreasing Ta (beginning with some values  of  T 
and Tol), is just the ignition criterion. The critical values 
of  β as  well  as  T and T0 depend,  besides  the profile 
factors, on the choice of the initial value of T0=Ta0 in the 
integration of Eq. (27). The minimum value of β and the 
associated critical values of T and Ta are
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With increasing or  decreasing initial  values  of  T0=Ta0 

the values of  β and Ta increase and T remains about 
constant. Thus,
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