О СМЕШАННОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ В ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКЛАХ

А.С. Бакай, С.А. Бакай, И.М. Неклюдов, В.И. Савченко, Ю. Экерт^{*}, У. Кюн^{*} Национальный научный центр «Харьковский физико-технический институт», г. Харьков, Украина; ^{*}Institute of Solid State and Materials Research, Dresden, Germany

Исследовано явление смешанной пластической деформации в объемном металлическом стекле (МС) Zr_{52.5}Ti₅Cu_{17.9}Ni_{14.6}Al₁₀, заключенном в тонкую медную оболочку. Исследования проводились при одноосном сжатии при температуре на ~30 К ниже температуры стеклования. Полученные результаты дополняют результаты, на основании которых ранее была построена диаграмма температурно-скоростных режимов пластической деформации этого MC.

1. ВВЕДЕНИЕ

До настоящего времени описание структуры металлических стёкол (МС) и дефектов, являющихся основными носителями процессов пластической деформации, имели дискуссионный характер. В поликластерной модели [1, 2] в отличие от других моделей основную роль в процессах пластической деформации играют диффузия и скольжение по межкластерным границам. Недавно методом полевой эмиссионной микроскопии были получены результаты, подтверждающие существование внутренних поверхностей раздела (межкластерных границ) в объемном MC Zr₄₁Ti₁₄Cu_{12,5}Ni₁₀Be_{22,5} [3,4], что находится в согласии с поликластерной моделью MC.

Смешанная пластическая деформация (СПД) впервые описана в [1,2]. Условием протекания СПД в процессе нагружения является приблизительное равенство напряжения диффузионно-вязкого течения: $\sigma dif = \eta dif^{\dot{\epsilon}}$ (ηdif - диффузионная вязкость, $\dot{\epsilon}$ - скорость пластической деформации) и критического напряжения σ^* , необходимого для продвиже-

ния граничной дислокации в тело кластера.

При $\sigma_{dif} \approx \sigma^*$ происходит зарождение подвиж-

ных дислокаций, перемещение которых приводит к образованию полос сдвига, сопровождающихся релаксацией напряжений в образце и изменением характера пластической деформации.

До недавнего времени процессы СПД и условия их протекания экспериментально не были изучены. Ранее [5] на основании результатов механических испытаний объемного MC Zr_{52.5}Ti₅Cu_{17.9}Ni_{14.6}Al₁₀ авторами была предложена диаграмма температурноскоростных режимов пластической деформации. На карте выделена область, в которой протекает СПД. В соответствии с этим в настоящей работе были выбраны режимы деформации объёмного MC.

Известно, что образование полос сдвига в процессе механического нагружения обычно ведет к образованию трещин и разрушению МС вследствие быстрого выделения накопленной энергии упругой деформации. Вместе с тем энергия, выделяющаяся в полосе сдвига в результате разгрузки образца, оказывается достаточной для локального разогрева, инициирующего расстекловывание и плавление. Поэтому, если предотвратить образование трещины вдоль полосы сдвига, можно ожидать, что будет происходить диффузионно-вязкое течение в образуемых полосах сдвига, обеспечивающее большую деформацию без разрушения. С целью предотвращения возможного разрушения сжимаемых образцов МС они помещались в мягкую тонкостенную оболочку, которая практически не препятствовала процессам скольжения и диффузионно-вязкого течения МС и вносила лишь незначительный вклад в зависимость σ от $\dot{\varepsilon}$.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Исходный металлический аморфный сплав Zr_{53.5}Ti₅Cu_{17.5}Ni_{14.6}Al_{10.4} представлял собой стержень диаметром Змм. Рентгеновская дифракция показывает, что структура сплава аморфна. С помощью дифференциальной сканирующей калориметрии (ДСК) установлено, что температура стеклования и температура кристаллизации составляют T_g=702 K и T_c=755 K соответственно.

Диаграммы напряжение-деформация при сжатии образцов диаметром d_0 ~3, высотой h_0 ~4 мм снимались на установке для механических испытаний типа INSTRON при температуре 673 К в вакуумных условиях. Предварительно образцы МС были помещены в медную оболочку (трубку) с толщиной стенки ~0.5 мм. Медная оболочка равномерно распределялась по высоте образцов, торцы образцов оставались свободными. Скорости нагружения составляли $1,6*10^{-2}$ и $3,3*10^{-2}$ с⁻¹.

Серия: Физика радиационных повреждений и радиационное материаловедение (83), с. 151-153.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ОБСУЖДЕНИЕ

На рис. 1 показаны зависимости напряжения σ от изменения высоты образцов Δl в процессе одноосного сжатия объемного MC $Zr_{53.5}Ti_5Cu_{17.5}Ni_{14.6}Al_{10.4}$ при температуре T=673 К и скоростях сжатия ε =1,6*10⁻²c⁻¹ (кривая 1) и ε =3,3*10⁻²c⁻¹ (кривая 2). Начальная площадь сечения образца составляла 7,64 мм², начальная высота l_0 =4 мм.

Рис. 1. Зависимости напряжения σ от изменения высоты Δl образцов объемного MC Zr_{53.5}Ti₅Cu_{17.5}Ni_{14.6}Al_{10.4}, помещенных в медную оболочку (1,2) и без оболочки (3) в процессе одноосного сжатия при температуре T=673 K и скоростях сжатия $\dot{\varepsilon}$ =1,6*10⁻²c⁻¹ (кривые 1,3) и $\dot{\varepsilon}$ =3,3*10⁻²c⁻¹ (кривая 2)

Из представленной на рис. кривой 1 видно, что при достижении значения напряжения ~110 кг/мм² в образце происходит переход от однородной пластической деформации к неоднородной: образуются полосы сдвига при одновременной релаксации напряжений, достигнутых в процессе сжатия.

В плоскости, образовавшейся под углом около 45° к оси нагружения полосы сдвига, происходит смещение одной части образца по отношению к другой. При этом напряжение падает до значения 55 кг/мм². Наряду с образованием и развитием полосы сдвига происходит диффузионно-вязкое течение в каждой из частей образца, разделенных полосой сдвига, и прорастание дислокаций, зародившихся в плоскостях межкластерных границ в тела кластеров. Это приводит к созданию сетки дислокаций в объеме образца. Диффузионный перенос обеспечивает релаксацию локальных напряжений вокруг ядра дислокации, что приводит к торможению процесса формирования полос сдвига и к интенсивному вязкому течению в самих полосах по механизму Кобле. При дальнейшем сжатии рост напряжения сопровождается развитием сетки дислокаций и образованием новых локальных полос сдвига. Развивающиеся полосы сдвига и сетка дислокаций в процессе дальнейшего сжатия ведут к локальным разгрузкам и дроблению кластеров. Эти процессы приводят к появлению множественных разгрузок в интервале напряжений от ~55 до ~110 кг/мм² (кривая 1). Последующие большие разгрузочные скачки напряжения

связаны с образованием сквозных (пересекающих весь образец) полос сдвига.

Следует отметить, что на образце после сжатия визуально не видны следы протекания процессов неоднородной пластической деформации (полос сдвига, трещин). При данном температурно-скоростном режиме образец обнаружил сверхпластичность.

При вдвое большей скорости сжатия ($\dot{\varepsilon}$ =3,3*10²c⁻¹) (см. рис.1 кривая 2) видно, что первая разгрузка напряжения в процессе одноосного сжатия происходит при достижении значения напряжения ~110 кг/мм² (положения и высота первых пиков напряжения на кривых 1 и 2 совпадают), в образце образуется полоса сдвига. Как и в первом случае, образование и распространение полосы сдвига сопровождается релаксацией напряжений, достигнутых в процессе упругого сжатия.

В плоскости образовавшейся полосы сдвига происходит смещение одной части образца по отношению к другой. При этом напряжение падает до значения 60 кг/мм². Последующие разгрузочные скачки напряжения носят тот же характер – они связаны с образованием сквозных полос сдвига, проходящих через весь образец (одну из смещенных частей образца). С каждой последующей разгрузкой, связанной с дроблением образца вновь образующимися полосами сдвига, значение напряжения, необходимое для образования новой полосы сдвига, уменьшается, поскольку образующаяся полоса сдвига будет проходить сквозь одну из частей образца, образовавшуюся в результате предыдущего дробления.

Роль медной облолочки незначительна, когда речь идет о пределе прочности образца, однако, оболочка совершенно изменяет макроскопический процесс пластической деформации, предотвращая разрушение по сквозным полосам сдвига. Это становится возможным благодаря тому, что в процессе разрушения по-видимому существенную роль играют термоупругие напряжения, локализованные в области полосы сдвига и возникающие вследствие выделения энергии при разгрузке образца. Как показано в [6], вдоль полосы сдвига происходит плавление материала. В отсутствие мягкой оболочки это заканчивается разрушением, сопровождающимся сильными акустической и световой вспышками. Поскольку ширина полосы сдвига не велика и составляет несколько десятков нанометров [3,4], то действие возникающих термоупругих напряжений легко гасится оболочкой. Последующее вязкое течение и скольжение в полосе сдвига связано с гораздо меньшими выделениями энергии из-за пониженной вязкости и сопротивления скольжению. В результате этого образование трещины легко подавляется удерживающими напряжениями, создаваемыми оболочкой.

С целью оценки влияния медной оболочки на протекание деформационных процессов в исследуемом объемном МС при одноосном сжатии было проведено сжатие образца этого же МС без медной оболочки. Сжатие проводилось при T=673 К и скорости сжатия $\dot{\varepsilon} = 1.6*10^{-2}c^{-1}$ (см. рис 1, кривая 3). Начальная

площадь сечения образца составляла 7,64 мм², начальная высота l₀=4 мм. При достижении значения напряжения 150 кг/мм² в образце образовалась сквозная полоса сдвига, в плоскости которой произошло скольжение одной части образца по отношению к другой. Дальнейшее сжатие привело к фрагментации смещенных частей образца вновь образовавшимися полосами сдвига.

На рис 2,а,б приведены фотографии образцов после одноосного сжатия при температуре Т=673 К и скорости сжатия $\dot{\varepsilon} = 1,6^{*}10^{2}c^{1}$. Образец на *а* сжимался в медной оболочке, б – без оболочки.

Рис. 2. Сечения образиов после одноосного сжатия с медной оболочкой (а); без неё (б)

а

4. ВЫВОДЫ

1. При одноосном сжатия образцов объемного MC Zr_{52.5}Ti₅Cu_{17.9}Ni_{14.6}Al₁₀, заключенных в тонкую медную оболочку при скорости сжатия 1,6*10-2 и $3.3*10^{-2}c^{-1}$ и температуре на ~30 К ниже температуры

стеклования, наблюдается смешанная пластическая деформация. При выбранных температурно-скоростных режимах одноосного сжатия образцы, помещенные в медную оболочку, обнаружили сверхпластичность.

2. Тонкая медная оболочка предотвращает образование трещин и преждевременное разрушение образца вследствие образования сквозных полос сдвига.

ЛИТЕРАТУРА

1.А.С. Бакай. Поликластерные аморфные тела. М.: «Энергоатомтиздат», 1987.

2.A.S. Bakai. The mechanical state map of amorphous solids //Materials Science Forum. 1993, v. 123-125, p. 145-154.

3.A.S. Bakai, V.V. Kul'ko, I.M. Mikhailovskij, V.B. Rabukhin, O.A. Velikodnaya. //J.Non-Cryst. Solids. 1994, v. 82, p. 315.

4.А.С. Бакай, И.М. Михайловский, Т.И. Мазилова, Н. Вандерка //Физика низких температур. 2002, т.

28, № 4, c. 400–405

5.С.А. Бакай, И.М. Неклюдов, В.И Савченко, Ю.Экерт //Вопросы атомной науки и техники. Серия: "Физика радиационных повреждений и радиационное материаловедение" (79). 2001. № 2, с. 12 - 18.

6.E.D. Tabachnikova, V.Z. Bengus, V.V. Molokanov, T.N. Mikhailova //Soviet Physics. Solid State. 1994, v. 36, N 8, p. 2355-2359.

ПРО ЗМІШАНУ ПЛАСТИЧНУ ДЕФОРМАЦІЮ В ОБ'ЄМНИХ МЕТАЛЕВИХ СТЕКЛАХ О.С. Бакай, С.О. Бакай, І.М. Неклюдов, В.І. Савченко, Ю. Экерт^{*}, У. Кюн

Досліджене явище змішаної пластичної деформації в об'ємному металевому склі (МС) $Zr_{52.5}Ti_5Cu_{17.9}Ni_{14.6}Al_{10}$, укладеному в тонку мідну оболонку. Дослідження проводилися при одновісному тиску при температурі на ~30 К нижче температури склоутворення. Отримані результати доповнюють результати, на підставі яких раніше була побудована діаграма температурно-швидкісних режимів пластичної деформації цього МС.

ON THE MIXED PLASTIC DEFORMATION IN BULK METALLIC GLASS A.S. Bakai, S.A. Bakai, I.M. Nekklyudov, V.I. Savchenko, Y.Eckert, U. Kuhn

The mixed plastic deformation phenomenon in the bulk metallic glass Zr_{52.5}Ti₅Cu_{17.9}Ni_{14.6}Al₁₀ in thin copper covering has been investigated. Research was carried out under uniaxial compression stress at the temperature 30K low that glass-transition temperature. The results have been received adject mechanical test results, according to which, a map of plastic deformation mechanisms (on the plane ($\dot{\epsilon}$, T)) of this metallic glass was plotted.