МОДЕЛЬНО-РАСЧЕТНОЕ ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ РА-ДИАЦИОННО-ИНДУЦИРОВАННЫХ НАПРЯЖЕНИЙ В ЗАЩИТНОЙ СТЕКЛОКЕРАМИЧЕСКОЙ ФОРМЕ

Ж.С. Ажажа, С.В. Габелков, И.М. Неклюдов, С.Ю. Саенко, Р.В. Тарасов, Г.А. Холомеев, Э.П. Шевякова, Б.А. Шиляев Институт физики твердого тела, материаловедения и технологий ННЦ ХФТИ, г. Харьков, Украина

Предложена модель и алгоритм расчета напряжений, вызванных радиационно-обусловленными размерными изменениями компонентов композита с дисперсными частицами, равномерно распределенными в двухкомпонентной матрице. В качестве примера проведена расчетная оценка развития напряжений в стеклокерамической защитной форме, содержащей ОТВС РБМК в течение 100 лет хранения после 10 лет выдержки в водном бассейне.

Одним из перспективных способов изоляции отработавшего ядерного топлива (ОЯТ) представляется капсулирование его методом горячего изостатического прессования (ГИП) в защитные стеклокерамические формы химического состава, подобного природным алюмосиликатам. Применимость этого метода во многом зависит не только от возможности создания прочного и монолитного изделия, но и от стойкости его к внешним и внутренним воздействиям в процессе длительного хранения [1,2]. В частности, одной из определяющих характеристик является радиационная стойкость материала защитой формы под действием облучения со стороны ОЯТ.

Стеклокерамика в качестве материала защитной формы выгодно отличается от других материалов возможностью варьирования физическими и эксплуатационными характеристиками путем выбора исходных материалов, количественного соотношения компонентов, а также технологических параметров при создании плотного стеклокерамического материала.

В настоящей работе рассматривается напряженное состояние материала защитной формы, вызванное радиационным воздействием со стороны ОЯТ. С этой целью предложена модель поведения стеклокерамики под облучением и составлен алгоритм расчета радиационно-индуцированных напряжений.

При всем многообразии исходных порошковых материалов (гранит, каолиновая и бентонитовая глина и т.д.) и параметров получения плотных стеклокерамических композиций на их основе конечный материал защитной формы представляет собой гетерогенный композит, содержащий стеклоподобную и кристаллическую фазы.

Структуру материала, полученного из порошков

природных компонентов в результате действия высокого давления и высокой температуры, можно характеризовать тремя основными элементами:

- первый структурный элемент стеклофаза (полевошпатовое и кремнеземистое стекло) – составляет до 50 масс. %;
- второй структурный элемент кристаллическая фаза, состоящая из муллита состава ЗАl₂O₃·2SiO₂, обладающего высокой прочностью, малым значением КТР, хорошей теплои радиационной стойкостью, в виде удлиненных зерен размером <1 мкм составляет до 40 масс. %;
- третий структурный элемент кристаллическая фаза, состоящая из нерастворившихся в стеклофазе зерен α-кварца, размер которых может достигать ~35 мкм, и зерен других минералов размером менее 30 мкм составляет до 10 масс. %.

Сложность моделирования поведения такой многокомпонентной системы под облучением обусловлена тем, что ее элементы по-разному ведут себя при радиационном воздействии. Многими исследователями показано, что стекло в большинстве случаев (кроме свинцового) испытывает под облучением усадку, а кристаллический материал – распухание [3,4]. Различие в воздействии облучения касается не только разных фаз композиции, но и разных ее структурных элементов. Показано, например, что композит с более крупными кристаллическими включениями испытывает под облучением бо́льшие размерные изменения, чем с мелкими [4].

Напряженное состояние стеклокерамического материала под облучением вызывается радиационными размерными изменениями его компонентов, вследствие чего по границам "стеклофаза–зерно" возникают напряжения – растягивающие в стеклофазе и сжимающие в кристаллическом включении.

Ранее авторами была предложена модель расчета напряженного состояния двухкомпонентного композита, состоящего из сферических зерен кристалла одного вида и размера, равномерно распределенных в однородной стеклоподобной матрице. Оценивался уровень напряжений в зависимости от объемного содержания кристаллической фазы и поглощенной дозы γ-облуче-ния [5].

Однако эта модель не отражает реальную структуру стеклокерамики: как уже говорилось, значительная доля кристаллической фазы представляет собой мелкие игольчатые зерна муллита, поведение которых под облучением неадекватно поведению крупных условно сферических зерен α-кварца, и, следовательно, модель двухкомпонентной системы далека от реального композита. В связи с этим представляется целесообразным при математическом моделировании поведения стеклокерамики под облучением принять, что каждое условно сферическое кристаллическое включение окружено макроскопически однородной изотропной двухкомпонентной матрицей, состоящей из стеклоподобного материала с вкраплениями зерен муллита (рис.1). В модели все "крупные" кристаллические включения представлены одинаковыми, равномерно распределенными сферическими зернами α-кварца как наиболее крупными и. следовательно, наиболее "распухающими" элементами кристаллической фазы стеклокерамики.

Рис. 1. Модель стеклокерамического материала с трехэлементной структурой

Предлагаемая модель расчета позволяет оценить при определенных допущениях напряжения в стеклокерамическом материале защитной формы, вызываемые переменной во времени поглощенной дозой облучения. Для реализации расчетной модели предложен также способ оценки эффективных упругих характеристик двухкомпонентной матрицы.

Основные положения модели:

 Матрица представляет собой макроскопически однородный изотропный материал с расчетными эффективными упругими характеристиками.

- Кристаллические зерна имеют сферическую форму.
- Кристаллические зерна распределены равномерно в бесконечной матрице.
- Композиция рассматривается как совокупность идентичных шарообразных ячеек, содержащих кристаллическое ядро, окруженное сферическим слоем матрицы.
- Ячейки касаются друг друга; пространство, не занятое ячейками, заполнено материалом матрицы.
- Каждая ячейка находится в силовом равновесии с соседними ячейками.

Рассматривается напряженное состояние ячейки, вызванное деформацией вследствие распухания кристаллического ядра и усадки матрицы. Оцениваются максимальные – на границе с кристаллическим ядром – растягивающие напряжения в матрице, которые растут по мере увеличения деформации, т.е. с ростом поглощенной дозы облучения.

Для расчета динамики развития напряжений в матрице уравнения равновесия в сферических координатах с началом в центре ячейки, дополненные граничными условиями на внутренней и наружной поверхностях шарового слоя, разрешаются относительно напряжений на границе ядро - матрица. Граничные условия: на внутренней поверхности – равенство нормальных напряжений в ядре и шаровом слое; на наружной – отсутствие радиального смещения.

Алгоритм расчета напряженного состояния композита предполагает:

 Расчет величины натяга (суммарного относительного изменения диаметра ядра и внутреннего диаметра шарового слоя) в произвольной ячейке защитной формы в зависимости от времени облучения. С этой целью расчетным путем определяется зависимость поглощенной дозы от времени облучения Ω(t) в данной точке защитной формы. Результаты предварительного расчета кинетики накопления дозы γ-облучения в ближайшей к ОТВС РБМК точке защитной формы в течение 100 лет хранения приведены на рис.2 (кривая 1).

2

Рис.2. Зависимость поглощенной дозы от времени храненя; 1 – одиночная капсула; 2 – капсула в хранилище

Далее рассчитывается соответствующее значение величины натяга в каждый момент времени по зависимостям изменения плотности под облучением компонентов композита (в настоящей работе такие данные получены из анализа литературных источников [4,6-8]):

$$\Delta D/D = f\{\Omega(t)\},\tag{1}$$

где D – диаметр включения.

 Расчет максимальных растягивающих напряжений в матрице данной ячейки в произвольный момент времени. Выражение для окружного напряжения на внутренней поверхности шарового слоя матрицы имеет вид:

$$\sigma_{\theta} = P_{k} \{y+1-6y(1-\nu_{m})/[2y+1-\nu_{m}(4y-1)]\}/(y-1), \qquad (2)$$

где P_k – контактное давление на границе с включением:

$$P_{k}=(\Delta D/D)/\{(1-2\nu_{kv})/E_{kv}+[2+y-\nu_{m}(4-y)]/(2E_{m}(y-1)), (3)$$

параметр у=(V_{sf} /V)/(V_m/V); V_{sf}/V и V_m /V – объемные доли ячеек и матрицы в композите, соответственно; v_m и E_m – эффективные упругие характеристики матрицы (коэффициент Пуассона и модуль Юнга); v_{kv} и E_{kv} – упругие характеристики α -кварца.

3. Оценка прочности матрицы.

По критерию Мора для хрупких материалов [9], эквивалентные напряжения и условие прочности, соответственно, имеют вид:

$$\sigma_{ekv} = \sigma_{\theta} + (\sigma_{B}/\sigma_{B})P_{k}; \sigma_{ekv} < \sigma_{B}, \qquad (4)$$

где σ_B , $\sigma_{\cdot B}$ – предел прочности материала при одноосном растяжении и сжатии соответственно.

Уравнения (2) – (3) содержат упругие характеристики элементов композита, в частности, двухкомпонентной матрицы. Для нахождения эффективных модулей упругости матрицы, состоящей из стекла с частыми включениями зерен неопределенной формы, в данном рассмотрении применен подход Хашина и Штрикмана, который дает возможность получить наиболее близкие пределы, в которых находятся искомые характеристики, без конкретизации геометрии включений [10,11].

Для иллюстрации предложенной модели проведен расчет развития радиационно-индуцированных напряжений в защитной стеклокерамической форме, содержащей ОТВС РБМК, в течение 100 лет хранения после 10 лет выдержки в водном бассейне. Исходный состав стеклокерамики (масс. %): альбитит – 15; каолин – 85. Фазовый состав полученного композита (масс. %): стеклофаза – 42; муллит – 45; другие кристаллические фазы – 13 (из них α-кварц – 3). Окисный состав стеклофазы (масс. %): SiO₂ – 83.3; Al₂O₃–12.2; K₂O+Na₂O – 4.5.

Результаты расчета роста эквивалентных напряжений приведены на рис.3 (кривая 1). Кривые 2 на рисунках 2 и 3 демонстрируют, соответственно, накопление дозы и развитие напряжений в гипотетическом случае, при заведомо завышенной дозе облучения, например, при тесном расположении большого количества капсул в хранилище. Расчет дозы в этом случае оценочный, основанный на использовании зависимости кратности ослабления излучения от толщины защиты из бетона [12].

Рис.3. Зависимость эквивалентных напряжений от времени хранения; 1 – одиночная капсула; 2 – капсула в хранилище

Как видно из рис.2 и 3, уровень расчетных радиационно-индуцированных напряжений достаточно низкий (~4 МПа при поглощенной дозе ~9 МГр), в то время как предел прочности на растяжение образцов стеклокерамики данного состава, облученных до аналогичной дозы, составляет ~ 90 МПа. Из рис.2 также видно, что при 60-100 годах хранения величина поглощенной дозы практически не увеличивается, откуда следует, что по данной модели уровень радиационно-индуцированных напряжений при хранении в течение 100 - 300 лет не возрастет.

Представляется интересным оценить влияние радиационных напряжений на развитие трещин, которые образуются при остывании вокруг крупных зерен в композитных материалах [13].

Для стекла данного окисного состава расчетный модуль Юнга E_{st} составляет 8.3·10⁴ МПа [14]. Соответствующая удельная энергия разрушения Г_i, определенная из соотношения:

$$\Gamma_{\rm i} = (K_{\rm 1C})^2 / 2E_{\rm st} \approx 6.10^{-6} \,\mathrm{M}\Pi a \cdot \mathrm{M} \tag{5}$$

(при расчете значение коэффициента интенсивности напряжений K_{1C} для хрупких материалов принято равным 1 МПа·м^{1/2}).

Длина трещины, для которой напряжение порядка 4 МПа является критическим, определенная по соотношению Гриффитса [15]:

$$c = \pi \Gamma_i E_{st} / \sigma^2 \approx 100 \text{ MM}, \tag{6}$$

что примерно в 500 раз больше реально возможных технологических трещин в данном композите.

Таким образом, результаты расчетов, выполненных в рамках предложенной модели и при принятых значениях размерных изменений компонентов композита под облучением, свидетельствуют о том, что радиационно-индуцированные напряжения, развивающиеся в стеклокерамическом материале защитной формы с ОТВС РБМК в течение 100 - 300 лет хранения, не могут явиться причиной деградации материала и нарушения целостности барьерного стеклокерамического слоя защитной формы.

Работа выполнена при поддержке гранта УНТЦ, проект № 1580.

ЛИТЕРАТУРА

1.С.Ю. Саенко. Капсулирование отработавшего ядерного топлива в защитные стеклокерамические формы: технологический подход и оценка применения //Труды Международной конференции Украинского ядерного общества. Киев, 19 – 20 сентября 2000 г.

2.С.Ю. Саенко, Р.В. Тарасов, И.А. Петельгузов, С.В. Габелков, А.Г. Родак. Коррозионная стойкость в водной среде стеклокерамических матриц, полученных методом ГИП //Труды XIV Международной конференции по физике радиационных явлений и радиационного материаловедения //Алушта, Крым, 12

- 17 июня 2000 г., с. 298-299.

3.В.С. Чиркин. Теплофизические свойства материалов ядерной техники. М.: «Атомиздат», 1968.

4.W.J. Weber, P. Roberts. A Review of Radiation Effects in Waste Forms //Nuclear Technology. 1983, Feb., v. 60, 178–198.

5.Ж.С. Ажажа, С.В. Габелков, С.Ю. Саенко и др. Математическая модель развития механических напряжений в стеклокерамике под облучением //Материалы Международной конференции "Передовая керамика – третьему тысячелетию", 5 – 9 ноября 2001 г., г. Киев, Украина.

6.W.J. Weber. Radiation Effects in Waste Glasses //*Nuclear Instruments and Physics Research*. 1988, v. B32, p. 471–479.

7.Van Konynenburg and Guinan. Radiation effects in Synroc-D //Nuclear Technology. 1983, v. 60, Feb., 206–217.

8.Z. Zhu, P. Jung. Irradiation Induced Dimensional Changes in Ceramics //Nuclear Instruments and Methods in Physics Research. 1994, v. B91,

p. 269-273.

9.Сопротивление материалов деформированию и разрушению. Ч.І. /Под ред. В.Т.Трощенко, "Наукова думка", Киев, 1993.

10.Композиционные материалы. Т. 2. Механика композиционных материалов /Под ред. Дж. Сендецки. М.: «Мир», 1978.

11.Р. Кристенсен. Введение в механику композитов. М.: «Мир», 1982.

12.Л.Р. Кимель, В.П. Машкович. Защита от ионизирующих излучений: Справочник. М.: «Атомиздат», 1972.

13.Композиционнве материалы. Т. 5. Разрушение и усталость /Под ред. Л. Браутман. М.: «МИР», 1978.

14. Стекло: Справочник /Под ред. Н.М. Павлушкина. М.: «Стройиздат», 1973.

15. К. Хеллан. Введение в механику разрушения. М.: «Мир», 1988.

МОДЕЛЬНО-РОЗРАХУНКОВЕ ПРОГНОЗУВАННЯ РОЗВИТКУ РАДІАЦІЙНО-ЗУМОВЛЕННИХ НАПРУГ В ЗАХИСНІЙ СКЛОКЕРАМІЧНІЙ ФОРМІ

Ж.С. Ажажа, С.В. Габелков, И.М. Неклюдов, С.Ю. Саенко, Р.В. Тарасов, Г.О. Холомеев, Е.П.Шевякова, Б.А. Шиляев

Запропоновано модель та алгоритм розрахунку напруг, викликаних радіаційно-зумовленими розмірними змінами компонентів композиту з дисперсними частками, що рівномірно розподілені в двохкомпонентній матриці. Як приклад здійснена розрахункова оцінка розвитку напруг в склокерамічній захисній формі, що вміщує ВТВЗ РБМК на протязі 100 років зберігання після 10 років витримування у водяному басейні.

MODEL-CALCULATED PREDICTION OF DEVELOPMENT IRRADIATION-INDUCED STRESSES IN GLASS-CERAMIC PROTECTION FROM

Zh. S.Azhazha, S.V. Gabelkov, I.M. Heklyudov, S.Yu. Sayenko, R.V. Tarasov, G.A. Kholomeev, E.P. Schevyakova, B.A. Schilyaev

The model and algorithm of accounting of the stresses caused by irradiation-induced size changes of a composite components with dispersal particles which are distributed in regular intervals in two-component matrix are offered. As an example, the assessment of development of stresses in glass-ceramic protective form containing RMBK spent nuclear fuel within 100 years of storage after preliminary cooling in water pool within 10 years is carried out.