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The  analysis  of  fixed  points  of  the  evolution  equation  for  temperature  in  thermal  fluctuation  area  in 
semiconductor film is done. It is shown that there exists a stable fixed point being more than the threshold of the 
breakdown regime development.
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1. INTRODUCTION
In this communication, it is analysed the stabilisation 

condition  for  the  evolution  regime  which  can  appear 
when the  direct  electrical  current  getting  through  the 
thin semiconductor film. Such a regime generates the so-
called thermal breakdown. This phenomena consists of 
the localisation of the extracted Joel heat in those areas 
on the film where sufficiently large thermal fluctuation 
are  concentrated,  it  gives  the  strong  heating  of  these 
areas.  Due to  increasing  dependence  of  the  electrical 
conductivity of  the  material  on  the  temperature.  Such 
positive feedback may give the local increasing of the 
temperature  up  to  the  melting  temperature  of  the 
material or to its eutectic point in the case of an intrinsic 
semiconductor.  This physical process is called {\it the 
thermal  breakdown},  it  is  developed  during  several 
microseconds and gives the functional destruction of the 
material.

2. THE EVOLUTION EQUATION AND THE 
WAGNER APPROXIMATION

It has been obtained in Ref. [1] the evolution integral 
and differential equation of the temperature field on the 
film, which describes the breakdown development and 
also  one-dimensional  solutions  of  this  equation  have 
been analysed. It has been used such an approximation 
when  the  effect  of  the  voltage  transfer  during  the 
breakdown regime is neglected.  It may; really, neglect 
this effect at the origin stages of the breakdown regime 
and if the circuit resistance being external to the film is 
not sufficiently large. In this work, we shall analyse the 
evolution equation taking into account the influence of 
the voltage transfer. We shall show that if the external 
resistance  is  sufficiently  large  then  it  is  possible  the 
stabilisation  of  the  evolution  regime.  As a  result,  the 
melting temperature (the eutectic one) is not attained. 

We start from the thermal conductivity equation in 
the form 
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It describes the temperature distribution ),( ' trΤ  on the 
film  when  there  are  non-linear  dependencies  of  the 
temperature  conductivity  coefficient  κ(T)  and  the 
electrical conductivity  )(Τσ . The integral denominator 
in the second summand takes into account the effect of 
the change of the voltage applying to the film during the 
evolution process.  In Eq. (1) E is the voltage on the film 
in  the  equilibrium state,  σ  is  the  average  electrical 
conductivity characterising the external resistance,  S is 
the film square, d  and is its thickness. Further, we shall 
consider in Ref. [2] that κ(T)=κ is constant and
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mT  is  the  temperature  of  the  electrical  conductivity 
minimum.

We realise the investigation of the solution stability 
of Eq. (1) using the approximation, which we name the 
Wagner  one.  It  was  used  in  the  thermal  breakdown 
theory  in  dielectrics.  We  consider  that  the  heat 
localisation  may  be  modelled  by  introducing  of  the 
thermal  channels  having  a  critical  diamete  D.  These 
channels are passing through the film. The temperature 
in  these  channels  is  approximately constant  when the 
spatial point changing in them. It is changed essentially 
in each of them only in thin boundary layer having the 
thickness l. We put that the temperature is equal T(t) 
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in  channels  outside  these  boundary  layers.  Outside 
channels,  it  is  put  to  constant  temperature  T0 of  the 
thermal surrounding.

The  breakdown  originates  at  mTT =0 .  At  these 
conditions,  the  equation  for  relative  temperature 
fluctuation

0),(),(/2 '' TtrTtr −=Θ ν

is  obtained  on  the  basis  of  Eq. (1),  if  there  is  one 
cylindrical  channel with diameter  D on the film. This 
value  is  not  equal  to  zero  only  in  the  channel.  The 
equation has the form 
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Here, we introduce non-dimensional parameter 
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characterising the speed of the voltage transfer and we 
denote  0)()( TtTt −=Θ .  Averaging  Eq. (2) over  the 
channel  domain having the  volume  V  and  using the 
transformation of integral on the volume to the integral 
on the surface (it is considered that the heat flow aside 
of the channel is absent), we obtain 
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Here, we take into account that the heat flow through 
cylinder side surface having the square Ddπ  is directed 
along the radial temperature gradient. This gradient we 
change approximately by the finite difference lt /)(Θ . 
At last, we simplify the averaging equation changing the 
temporal  scale  tt ⇒Ε 22/ν  and  introducing  the 
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Our further analysis is  reduced to the investigation of 
the solution stability of this equation.

3. ANALYSIS OF THE SOLUTION STABILITY

If Θ  in Eq. (3) is small then one can consider that
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and,  therefore,  solutions  are  stable.  If  )(tΘ  is 
sufficiently large but the value η  is very small such as 
we  may  neglect  by  the  value  ))(1( 2 tΘ+η  in 
denominator  then  we  obtain  the  equation 
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α  possessing the  peaking regime 

which  describes  the  thermal  breakdown development, 
i.e. its solution 
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α>Θ )0(  goes to  infinity during the finite time  ∞t , 
which  is  identified  with  the  breakdown time.  Let  us 
study  now the  possibility  of  stabilisation  in  the  case 
when  ))(1( 2 tΘ+η  is  sufficiently large  in comparison 
with the  unit.  In  this  case  we neglect  the  unit  at  the 
denominator  of  second  summand in  Eq. (3) and  after 
that we take away the extra parameter in the obtained 
equation  introducing  the  new  temperature 

Θ⇒Θ2/1η ,  the  decrement  ααη ⇒2/1  and  the 

time tt ⇒2/1η . As a result we obtain the equation with 
one parameter 
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Let us find some fixed points of this equation, i.e. 
solutions 0)( =θf . Such solutions consist with 0=θ  

and  solution  of  the  equation  22 )1( θαθ += .  Let  us 

introduce the notation  21 θ+=X . Then this equation 
has the form 

.01)( 4 =+−= XXXP α

There is the unique minimum of the polinom )(XP  in 

the  point  3/12 )4(*
−= αX .  It  satisfies  the  equation 

0)(' =XP .  There  are  not  other  fixed  points  different 
from  0=θ  at  0)( * ≥XP  (the breakdown regime is 
not realised). If 

04/)4(31)( 3/12
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i.e.  4/)4/3( 32 ≤α ,  then  there  are  two  solutions 

−+± > XXX ,  of the equation  0)( =XP . They are 
both  positive  since  1)0( =P .  At  this  case  1>+X  is 
fulfilled for sure, since 1* >X . Consequently, 1>−X
, since 0)1( 2 >= αP . Therefore, two fixed points ±θ  
correspond to solutions ±X . It is easy checked that these 

fixed  points  tend  as  3/1~,~ −
+− αθαθ  

asymptotically at small α .
Let  us  analyse  the  stability  of  those  found  fixed 

points.  For  this,  it  is  necessary to  set  the sign of  the 
derivative  θθ ddf /)(  in  each  of  these  points.  It  is 
obvious in the point 0=θ  that

αθθ −=0)/)(( ddf . 

127



This is in accordance with the above conclusion about 
its stability. In points ±θ  we obtain 

)1)(31()( 22'
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on the basis 0=±θ . Since the following conditions
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take place. Consequently, the point +θ  is stable and, the 
point  −θ  should  be  unstable  on  the  basis  of  some 
topological arguments. Just this point corresponds to the 
threshold  of  the  fluctuation  value  from  which  the 
breakdown is developed.

4. CONCLUSIONS
Thus,  the  stable  fixed  point  +θ  places  above  the 

threshold point −θ . The "breakdown" solutions )(tΘ  

are attained to this point and if its value corresponds to 
the temperature  +T  being less the melting one (or the 
eutectic one) then the breakdown is not realised. In this 
case only some areas having very large temperature (the 
mesoplasma channels) may be occur.
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СТАБИЛИЗАЦИЯ РАЗВИТИЯ ТЕПЛОВОГО ПРОБОЯ
 В ПОЛУПРОВОДНИКОВЫХ ПЛЁНКАХ

Н.В. Андреева, Ю.П. Вирченко

Проведен анализ неподвижных точек эволюционного уравнения для температуры в области тепловой 
флуктуации  на  полупроводниковой  плёнке.  Показано,  что  существует  устойчивая  неподвижная  точка, 
большая по величине порога возникновения режима пробоя.

СТАБIЛIЗАЦIЯ РОЗВИТКУ ТЕПЛОВОГО ПРОБОЮ
 У НАПIВПРОВIДНИКОВИХ ПЛIВКАХ 

Н.В. Андреєва, Ю.П. Вiрченко

Проведено аналiз нерухомих точок еволюцiйного рiвняння для температури в областi теплової флуктуацiї 
у напiвпровiдниковiй плiвцi. Доведено, що існує нерухома стійка точка, яка є більшою за величиною порогу 
виникнення режиму пробою.
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