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The possibility of self-focusing in propagating the rays in the non-uniform mediums is shown. This self-focusing is 
similar to a Veksler-Mac-Millan’s autophasing in the theory of accelerators.  The self-focusing of the rays are able to 
weaken  essentially an effect of random non-uniformities and to increase the threshold of development of stochastic 
instability.
PACS: 42.15.-i

INTRODUCTION
In  many  cases  in  the  non-uniform  mediums  like 

laboratory  plasma,  ionosphere,  ocean,  or  fiber 
communication  lines,  the  dimensions  of  the  non-
uniformities are able to exceed considerably a wavelength 
which propagates in these mediums. In order to analyze 
the propagation of the waves in this case it is necessary to 
apply an approximation of geometrical optics. Taking into 
account  that  the  geometrical  optics  so  concerns  to  the 
wave optics, as the classical mechanics concerns to the 
quantum  mechanics  we  are  able  to  expect  that  many 
important  features  of  classical  dynamics  of  charged 
particles  in  electromagnetic  fields  can  develop  in  the 
dynamics  of  the  rays  too.   In  particular,  there  is  a 
phenomenon of the autophasing of accelerated particles in 
physics  of  charged  particles.  This  phenomenon  was 
discovered  by  Veksler  and  Mac-Millan  and  is  a 
fundamental one in the theory of the accelerators.  We can 
hope that analogical phenomenon will take place also in 
propagating  electromagnetic  rays  in  the  non-uniform 
mediums, for example, in the non-uniform plasma. It is 
necessary to note that a phenomenon of the self-focusing 
of the rays was studding in [1].    

PARAXIMAL APPROXIMATION
The simplest we can see analogy between dynamics of 

charged  particles  in  the  external  electromagnetic  fields 
and  dynamics  of  the  electromagnetic  rays  in  the  non-
uniform dielectric mediums if the paraxial approximation 
for describing dynamics of the rays will be used: 
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where  0 1( , ) ( ) ( , )n r z n r n r z= + ;  0 ( )n r  -  independent 
from  longitudinal  co-ordinate   z  -  component  of  the 
refraction coefficient;  1( , )n r z  - slowly changing along 
axis  z  component. As seen from (1), we have confined 
the simplest case when dynamics of the rays is considered 
at  the plane ( ,r z ).  For  comparison let  us  consider  the 
non-relativistic  motion  equation  of  charged  particle  in 
potential  ( , )V r t
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By comparing the equation (1) with motion equation of a 
material  point  (2),  we can see  that  these  equations  are 
completely analogical. The analogua of the potential V−  

in the geometrical optics is the coefficient refraction 1n , 

and  analogue  of  mass  is  0n .  If  we  will  choose  the 
potential as

( )2 4( , ) / 2 / 4 sinV r t r r r tα β ε= ⋅ + ⋅ − ⋅ ⋅ Ω ⋅ ,
we will  obtain  the  equation  that  will  be  similar  to  the 
equation  of  the  Duffing’s  oscillator  which  is  acted  an 
external  periodical  force  having  amplitude  ε  and 
frequency  Ω  on.  Before  the  dynamics  of  the  Duffing 
oscillator that is subjected both the similar external effect 
and  parametrical  perturbation  action  have  been 
investigated  in  [2].  In  particular,  the  condition  of 
appearance  of moving particles stochastic instability has 
been  defined  in this  paper.  It  has  been  shown  that 
dynamics of the rays in propagating in the medium having 
the refraction coefficient (4) should be similar dynamics 
of the charged particles.  

SELF-FOCUSING OF THE RAYS
The paraxial approximation in the geometrical optics 

corresponds  to  the  non-relativistic  moving  of  charged 
particles.  It means that the generalized pulse of the rays 
can not become by sufficiently major. In order to describe 
dynamics of the rays having great values of the pulse we 
should refuse from the paraxial  approximation.   In this 
case it is necessary to use more common equations of the 
geometric  optics  which  are  similar  to  the  relativistic 
motion  equations  of  charged  particles.  These  equations 
may be written  
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where  2 2
0 ( , , ) ( , )H x p z n x z p= − −  is  hamiltonian, 

,x p are  the  generalized  coordinate  and  pulse 
correspondently. Let us consider the first case when the 
rays  propagate  in  the  medium.   The  parameters  of  the 
medium  depend  only  on  transverse  coordinate  x  (

( )n n x= ).  From  the  equations  (5)  we  can  get  the 
following equations for a generalized coordinate x . 
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The equation (4) is one of the non-linear pendulum. In 
particular, if the refraction coefficient of the medium will 
be given as

                    2 2 2 2
0 / xn n ch

a
µ= + ,                    (5)
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the  qualitative  view   of  dynamics  of  the  rays  will  be 
similar to a view that is presented in Fig. 1. 

Fig. 1

In Fig. 1 the trajectories of 20 rays which were entered 
into the medium with different  input characteristics  are 

shown.  A  value  
x
a

Ψ =  is  called  by  a  phase  of  a  ray 

relatively of non-uniformity. As this takes place, a value 
a  defines  transversal  dimensions  of  a  canal  of  the 
medium.   Let  us  assume  that  typical  transversal 
dimensions  of  the  canal  of  the  medium  depend  on 
longitudinal coordinate z ,  e.g.  ( )a a z= .   In this case a 
phase of a ray will be a function not only x  but also z  , 
e.g.  ( , )x zΨ = Ψ .  Taking into account an analogy with 
dynamics  of  the  charged  particle  in  our  case  the  self-
focusing of the rays will take place. In order to define the 
conditions  of  appearance  of  the  self-focusing  it  is 
necessary to consider the equation that describes changing 
a phase of a ray with coordinate  z :  
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A synchronous phase we can define using the following 
condition:    ( ) / ( )s x z a z constαΨ = = =  .  The  small 
deviations  of  the  phase  from  the  synchronous  phase 

sϕ = Ψ − Ψ  satisfy an equation of  the  linear  pendulum 
with attenuation:
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In  particular  it  follows  from  equation  (7)  that  if  the 
transversal  dimensions  of  the  dielectric  waveguide  will 
increase  ( 0a >& ) the phases of all rays will aim at a phase 
of a synchronous ray.  In this case the self-focusing will 
take place. Hence the condition of the self-focusing in the 
considered model will be simple condition of growth of a 
typical transversal dimension of a canal in the medium. 
Fig.  2  and  3  show  the  generalized  coordinates  and 
generalized pulse vs the longitudinal  coordinate  z  for 
the rays used before in Fig. 1.  The difference is to change 
the value ( )a z  in the last case take place in according to 
the following law:  0a a z= + . The characteristics of the 

refraction  coefficient  have  been  chosen  the  following: 
0 00.8; 3; 1a nµ= = = . It is seen from Figs. 2 and 3, that 

in growing ( )a z dynamics of the rays are organized. 

Fig.2

Fig. 3

A  value  of  the  generalized  impulse  decreases,  e.g.  the 
angle of incidence of the rays to the axis  z  decreases. 
The absolute values of deviations of the rays are grown. 

INFLUENCE OF FLUCTUATION UPON 
DYNAMICS OF RAYS

There are fluctuations in the real mediums always.   In 
order to take into account the fluctuations the refraction 
coefficient  can be written as:

            ( )2 2
0 1 , ( )n n n x z q z= + +     1q << .              (8)

It  is  to  be  noted  that  the  fluctuations  are  by  random 
functions,  which  have  zero  mean  values,  and  these 
functions are delta-correlated: 
                         ( )( ) ( )q z q z D z zδ′ ′⋅ = ⋅ − .
By  assuming  that  the  fluctuations  are  not  great  the 
generalized impulse and Hamiltonian may be presented as 
a sum of perturbed and unperturbed parts:
      0p p p= + %     0 1( , , ) ( , , ) ( , , )H x p z H x p z H x p z≈ + ,

where 2 2
0 0 1H n n p= − + −          1

02
qH
H

=

Then  for  perturbed  generalized  impulse  the  following 
equation can be written as  

         0 01
2 2
0 0

1 1
2 2

H dpHdp q q
dz x x dzH H

∂∂
= − = − =

∂ ∂
%

.      (9)

From equation (9) it is seen that a mean value of p% equals 
zero, e.g. 0p =% .
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It is necessary to note that the unperturbed value of the 
impulse has regular periodical variations along of axis z  
with a typical period equal  β .  In addition the value of 
unperturbed impulse  attenuates slowly  according  to  the 
law  ( )exp zδ− ⋅ .  By  using  these  considerations  from 
equation (9) can get the following expression for  mean 
square of p% :

       ( ) ( )22
02

4
0

1 exp( 2
24

p z
p D

H
β δ

δ
⋅ ∆ − −

= ⋅ ⋅% .        (10)

If   self-focusing  of  the  rays  is  absent  then the  value 
0δ = . In this case an expression (10) is transformed in 

the famous law of a diffusion:  

                  ( ) 22
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4
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p

p D z
H

β ⋅ ∆
= ⋅% .                     (11)

As  appears  from  expression  (11)  the  scattering  of 
generalized impulse grows with increasing the distance. 
Eventually, the rays will abandon the canal. 
  As may be seen from expression (10), the presence of 
self-focusing can essentially confine an influence of the 
fluctuation in propagating of the waves.  

STABILIZATION OF STOCHASTIC 
INSTABILITY

If parameters of the medium are constant along of axis 
z ,  hamiltonian   will  depend on  canonical  variables   (

0 ( , )H H x p= ). In this case the new canonical variables 
which include an action and angle ,I Θ  can be entered. 
With  these  new  canonical  variables  initial  hamiltonian 
will be a function only of one action. Let us assume that 
there  have  small  periodical  perturbations.   In  this  case 
hamiltonian can be written as  
                   0 ( ) ( , , )H H I V I zε= + Θ ,                  (12)
where
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The  difference  of  given  perturbation  from well-known 
perturbation is  to  take  place  a  dependence  of  the 
parameter ℵ  from coordinate z . In spite of hamiltonian 
(21)  allows  getting  the  following  equations  set  that 
describe  dynamics  in  the  vicinity  of  one  cyclotron 
resonance:   

, sinm s sI mVε= ⋅ ⋅ Φ& ,

 ( ),( ) cos /s m sI V Iω εΘ = + Φ ∂ ∂& , ( )m I sωΦ = + ℵ& .  (13)
It is known, that when the non-linear resonances overlap 
the  stochastic  instability  develops.  If  the  parameter  ℵ
does not depend on  z then by using (13) a condition of 
the  stochastic  instability  can  be  found  easily  (see,  for 
example, [2]).  In our case dynamics of a small deviations 
from stationary points may be found easily by using:   

                cos( ) 0n
αϕ ϕ β ϕ
λ

+ − ⋅ Φ ⋅ =&& & .                  (14)

Here is  nϕ = Φ − Φ ,  nΦ  is  stationary phase.  In getting 
(14) we assumed that the parameter ℵ  depend on  z  in 
according to the following law:
               ( )2 / zπ λ αℵ = + , where /s mλ π ω= − .
As will be seen from (14) we have obtained an damping 
oscillator. In common case the presence of the attenuation 
allows  increasing  the  threshold  of  appearance  of  the 
stochastic instability.  
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САМОФОКУСИРОВКА ИЗЛУЧЕНИЯ В НЕОДНОРОДНЫХ СРЕДАХ

А.В.  Буц, В.А. Буц, Г.И. Чурюмов

Показана возможность автофазировки лучей,  распространяющихся  в  неоднородных  средах.  Эта 
автофазировка аналогична автофазировке Векслера-Мак-Миллана в теории ускорителей. Автофазировка лучей 
существенно ослабляет  влияние случайных неоднородностей и увеличивает порог развития стохастической 
неустойчивости. 

САМОФОКУСУВАННЯ ВИПРОМІНЮВАННЯ В НЕОДНОРІДНИХ СЕРЕДОВИЩАХ

А.В. Буц, В.А. Буц, Г.І. Чурюмов

Показана  можливість  автофазування  променів,  що  поширюються  в  неоднорідних  середовищах.  Це 
автофазування  аналогічне  автофазуванню  Векслера-Мак-Міллана  в  теорії  прискорювачів.  Автофазування 
променів  істотно  послабляє  вплив  випадкових  неоднорідностей  і  збільшує  поріг  розвитку  стохастичної 
нестійкості. 
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