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It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically
inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation
becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-
consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical
analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics.
Such peculiarity of radiation allows to expect of creation of nonrelativistic FEL.
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1. INTRODUCTION

Lately large attention is devoted to investigation of the
mechanisms of short-wave radiation generating. One of
the possible mechanisms of generating of short-wave
radiation is the double Doppler effect realizable in lasers
on free electrons. In addition the considerable frequency
multiplication is reached while using relativistic electron

beams v ~y2V o- It is known also, that in vacuum the
oscillator effectively radiate high numbers of harmonics
only in the case when it has a large energy. So, for

synchrotron emission the maximum of radiation falls on

harmonics with number v ~y° [1]. It is possible one

more mechanism of generating of short-wave radiation
which not require to use high energy beams. This is the
radiation of high numbers harmonics by nonrelativistic
oscillators — by charged particles moving in external
periodic in time electrical field, and in field of external
periodic in space, potential.

The investigation of excitation of harmonics by
ensembles of charged oscillators is carried out. These
investigations were carried out by analytical and
numerical methods. The analytical results are in the good
agreement with numerical results.

2. RADIATION IN A PERIODIC POTENTIAL

Briefly we’ll describe the mechanism of generating of
high numbers harmonics by nonrelativistic oscillators. Let
charged particle moves in the external periodic in time

electrical field E()= EYos(wY) and in the field of
periodic potential U(z)= U, + glicos(k z), « = 21 /d .
For simplicity we’ll suppose, that the motion occurs only

along Z-axis. In general the equations for electron motion
in such field has a kind

ap
- eE- eEy,
a TV
dr
—=V, V=P/Jl+t P, (1)
dt
where Ey; = -0U.

Let's suppose that the intensity of these fields is small
enough, so that it is possible to consider the particle
motion in these fields as nonrelativistic. Besides we’ll
consider that E>> gk

As far as we first of all are interested by motion of
particle along an axisZ, rewriting the system (1) along

an axis Z, rewriting the system (1) in dimensionless

variables we obtain:

V. K dz
= = ¢ cos(Q 1)+ wikin(—[z), —=V, 2
@r) (k ) 0 ()
where:¢ = eE/mcw , W= egk /mcw | o = ke, z= kz,
Vz = VZ/(w /k)’Q:wO/kC’T:kct.

We’ll solve the system (2) by a perturbation method. So
we have the solution in zero approximation

dv.,
=¢cosQr 3
a (3)

It will be :
V,=(/Q)sinQr &)
z=-(6/0%)cosQrT . (5)

Using expansion formula
sin(xcos¢ ) : 2J1(x)cos¢ - 2J3(x]cos3¢ t 2J5(x)c035¢ -

(6)

in first approximation we can receive solution of the system
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+1)0 P
(3)

where #l = —, J 5 j+1—Bessel functions of (2j+1) — order.

For a harmonic oscillator of type

z= asin(w¢) 9)
in [1] the formula for emission power for the first
harmonic was find (dipole radiation, n = 1, radiation

frequency ®)
ezw 2n
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In our case or excitation harmonics amplitude
B = 2wy (1)/12n+ DA P2
and so the formula (10) will be

AW awren Ty () H2
e 3¢ HensnoPd’
Thus, we can see, that conditions of radiation maximum
f=2nt1)=1/Q in this case completely coincides with

condition of oscillator radiation in periodically
inhomogeneous dielectric [2], i.e. in both cases the
radiation maximum corresponds to the same frequency.

(1n

When eU,/ me? > q¢ 2 the role of a periodic potential for

radiation will be more significant.

3. QUANTUM CONSIDERATION

The considerable information about features of charged
particles’ radiation in a periodic potential one can obtain
using the methods of quantum electrodynamics. Using the
perturbation technique, it is easy to obtain following
expression for a radiating power of charged particle

2n n
P- J’dth'd@J'd(hw)Dme (hw)sind . (12
00
2n Lo *n’
= H,;, Fitw-L0E),pz —
Here WY/, n | My |70 ( ), P (ch)3h,

dh |21 h
= S SOy o N1
L w)
X {(q k)W ¥ )t e (¥ 5 py l-)JDexp(- iAkDr)dr ,
n? = ¢ - inductive capacity of medium, n — its refraction

index Ak = ki_kf_k,l .

i
)

If the particle moves in potential with a weak periodic
inhomogeneity, its wave function can be represented as:

Wl.:z Wi’mepoi(kﬁ mD()DI”D, (13)

where ¥, = g"W io-

From (13) it is visible, that the wave function has
addends, which can be identified with particles, which
velocity exceeds the velocity of real particle. Such
addends it is possible to identify with fast virtual
particles. In themselves they do not exist. Here one can
see the analogy to wvirtual waves in periodically
inhomogeneous mediums. Only in the last case we were
interested in the slow virtual waves. For a case of
particles we’ll be interested in the fast virtual particles.
Substituting the wave function (13) into the formula (12),
it is possible to obtain following expression for radiating
power of charged particle, which one moves in periodic
potential:

i,m

2
C

2
P= g (Ve [0 L (- 5. a0
C vE

where v= 20 /(K Ue;) at v, >> v,; v=0w /(k [e)

at V; ~ V., €, - unit vector, directed along V; .
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If there are the oscillator moving in periodic potential, we
obtain the formula, which coincides with formula (11).

4. RADIATION OF OSCILLATORS FLOW

While investigating the elementary mechanism of charged
oscillator radiation, which moves in periodically
inhomogeneous potential, the possibility of excitation of
high numbers harmonics by nonrelativistic oscillators was
shown. For the effectiveness of such radiation, it is
necessary the fulfillment of following condition:

d= A, r,= nd /21 , here A

radiation, ¢ — period of inhomogeneity, 7, — amplitude

— wavelength of

of oscillator displacement from its equilibrium position,
ﬁ = y/e<K 1, v — oscillator velocity, n — number of
radiated harmonic.

We’ll consider the excitation of electromagnetic waves
by ensemble of oscillators, which are in the field of
periodically inhomogeneous potential U(z)= Uyt gleos(t Iz) .
The fullest description of self-consistent process of
interaction of charged particles with an exciting field
implies the simultaneous solution of Maxwell equations
for the electromagnetic field and equations of charged
particles’ motion in exited fields.

- - Vv
d_B: —crotE,d—E: CI’OtH‘47Tj
it Jt

ol L - )
—p=eE+fv|‘B+F0sinw0t—eCU,—r=v
dt c dt

where @ frequency of oscillation of the oscillator, E) -

amplitude of the external force, which acts on oscillator
(creates an oscillator). The oscillations of the oscillator
will be considered to occur along axis Z.

During investigation of the elementary mechanism of
radiation of the oscillator it was find out, that the
directional diagram corresponds to dipole radiation, i.e.
the radiation is directed in a transverse direction with
respect to direction of the oscillator oscillation. Therefore
we shall search for such solution for exited wave

E= Re A(t)exp(ikx) (16)
We’ll study time evolution of electromagnetic field, in
which the only following components Ex, Ez, H y are

different from zero. Let's substitute expressions for fields
(16) in the set of equations (15). Averaging the obtained
equations on a space phase of perturbation, we’ll obtain
the following set of equations for finding fields and
characteristics of oscillators:

d .
Px - Ree . exp(ix) - V - Reh, exp(ix),
dp, _
dr

Ree ; exp(ikx)+ v, Reh, exp( ix) +

t focosQrT + wsin(K z)

d d - -
i: Vi ﬁ:vz’ v:p/ 1+p§+p22, (17)
dh
_y-iEZ,
dr
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—¢, = -—2 1V, exp(-ix)dx
dT X 2” ;l)- X p( ) 0 »
2n
d 2W§
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The integration in the right part of these equations for
fields is over on initial values of oscillators coordinates.
The set of equations (17) is written to in dimensionless

variables:

p/ - - - ek
kctqr,qur,/nc- 'K’E'e/ckc’
- F 2. 4re’ nb
h=el/  f = ‘/ L0 ,

4101(0 0 mcke 4re? n, / /k
where /7 € - mass and charge of electrons, 71, - density
of oscillators.

5. RESULTS OF THE NUMERICAL

ANALYSIS
The numerical analysis of self-consistent set of

equations (17) has confirmed the presence of instability in
the considered system. The values of dimensionless
parameters (frequency are standardized on kC , and wave

vector on k) were following: ©p=0.3, w=0.02, f,
=0.02, N =5. In these conditions the excitation of 11-th
harmonics by oscillators in periodic potential with
k = Sk was observed. The results of simulation are
represented on figures 1-4. In Figs. 1, 2 the dependencies of
amplitude on time and spectrum of the field ¢, are shown.
In Figs. 3, 4 one can see amplitude and spectrum of the
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The dark filling inside the envelope amplitude is high
frequency oscillations. Spectrum of the field ¢, has a

maximum on frequency, which equal 1, and that is

according to 11 harmonic of oscillation frequency of
oscillators. Spectrum of the field ¢ , has a maximum on
frequency, which equal@ 5 . It is connected with, that field

¢, at obtaining equations (18) the resonance wasn’t

field éx . separated, and also with that the field ¢, represents quasi-

0.01 longitudinal oscillations of an ensemble of oscillators.
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BO3BYXJIEHHME BBICOKNX HOMEPOB 'APMOHUK
MNOTOKAMHU OCIIMJIJISITOPOB B TIEPUOJUYECKOM INOTEHIIUAJIE
B.A. Byu, B.H. Mapexa, A.Il. Toncmonyscckuil

ITokazaHO, YTO MAaKCHUMyM CHEKTpa H3Iy4YCHHsS HEPEJIATUBUCTCKUX OCLUIUISTOPOB, KOTOpBIE IBUXKYTCS B
MIEPUOANYECKH HEOJHOPOJHOM MOTEHIMAJE, MOXXET HAXOJUTHCS B OOJIACTM BBICOKHX HOMEPOB TapMOHHWK. CrHexrtp
U3TY4YCHUS TaKUX OCLUWIUIATOPOB CTAHOBHUTCA IOXOXKHUM Ha CHEKTP H3IYYCHUS PEISTUBUCTCKUX OCLMIUISATOPOB.
CdopmynupoBaHbl ypaBHEHUS, OIMMCHIBAIOIINE CAMOCOIIIACOBAHHYIO HEJIMHEHHYIO TEOPHIO BO30YKICHHUS BBICOKHX
HOMEpOB IapMOHUK aHCAMOJIEM OCLWIIATOPOB, U MPOBEACH UX YUCICHHBIH aHanu3. UMCIeHHbIM aHanu3 HOATBEPINI
BO3MO>KHOCTB M3JTy4€HHsI BRICOKHX HOMEPOB TapMOHHK.

3BYAKEHHS BUCOKUX HOMEPIB T'APMOHIK
MNOTOKAMMH OCHMJIATOPIB B IIEPIOJUYHOMY INOTEHIIAJII
B.O. byu, B.1. Mapexa, O.11. Toarcmonysccokuii

[lokazano, MmO MakCUMyM CIIEKTpa BHIIPOMIHIOBAHHS HEPENSTHBICTCHKUX OCIHHJISATOPIB, SKI PyXaroThCS Yy
NEepioAMYHO HEOJHOPITHOMY MOTEHIIiaNi, MOXE 3HAXOJUTHUCh B OOJACTi BHCOKMX HOMepiB rapMmoHik. Coekrp
BUIPOMIHIOBAHHS TaKUX OCLWISATOPIB CTAE CXOXKMM Ha CIIEKTP BHIIPOMIHIOBaHHS PEJSTHUBICTCBKUX OCHWJISTODIB.
CdopmynroBaHi piBHAHHS, [0 ONUCYIOTh CaMOY3TO/KEHY HEJIHIMHY Teopito 30yMKeHHS BUCOKHX HOMEPIB TapMOHIK
aHcaMOJIeM OCHMIIATOPIB, 1 MPOBEACHO iX YHCCHbHHHA aHami3. YuCeabHHH aHami3 MATBEPIUB MOMKIUBICTh
BHUITPOMiHIOBAaHHS BUCOKHX HOMEPIB TapPMOHIK.
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