РАЗДЕЛ ЧЕТВЕРТЫЙ ФИЗИКА РАДИАЦИОННЫХ И ИОННО-ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ

УДК 546.26:539.23

МИКРОИНДЕНТИРОВАНИЕ ПОВЕРХНОСТИ ЖЕСТКОГО ДИСКА С УГЛЕРОДНЫМ АЛМАЗОПОДОБНЫМ ПОКРЫТИЕМ

Н.В. Камышанченко, А.Я. Колпаков, И.Ю. Гончаров, О.А. Дручинина Белгородский государственный университет, г. Белгород, Россия

Исследована зависимость времени восстановления деформированной области вокруг отпечатка после микроиндентирования поверхности жесткого магнитного диска персонального компьютера с углеродным алмазоподобным покрытием толщиной 100...200 нм, полученным импульсным вакуумно-дуговым методом, от толщины защитного покрытия и взаимного расположения отпечатков. Размеры отпечатков измеряли с помощью сканирующего зондового микроскопа SMENA-A. Обнаружен эффект восстановления деформированной поверхности с алмазоподобным углеродным покрытием через 24 и 72 ч. Предложен возможный механизм данного явления, связанный с релаксацией внутренних напряжений сжатия в покрытии.

В настоящее время одной из перспективных областей применения тонких пленок алмазоподобного углерода является защита поверхности жестких дисков компьютеров [1]. Определение эксплуатационных характеристик, а именно микротвердости тонких покрытий ввиду малой их толщины, является довольно сложной технической задачей, требующей применения современного оборудования для анализа поверхности и большого объема иссле-дований. Одним из способов определения микротвердости является измерение размера отпечатка, оставленного алмазным индентором после его вдавливания в поверхность с заданной нагрузкой [2]. В последнее время все большее применение находят методы инструментального наноиндентирования, которые имеют высокое пространственное и временное разрешение [3]. При исследовании различных материалов данными методами часто наблюдается явление упругого восстановления размеров отпечатков [4].

В данной работе приведены результаты исследования обнаруженного нами эффекта восстановления деформированной области по изменению интерференционной картины вокруг отпечатка после микроиндентирования на поверхности жесткого диска компьютера с нанесенным на него тонким углеродным алмазоподобным покрытием через 24 и 72 ч. Целью работы было изучение процессов восстановления деформированной области в зависимости от толщины защитного покрытия и взаимного расположения отпечатков.

Объектами исследования являлись образцы из алюминиевого сплава, используемого при изготовлении жестких дисков для компьютеров, на которые наносилось углеродное алмазоподобное покрытие толщиной 100, 170 и 200 нм импульсным вакуумнодуговым методом, подробно описанным в работах [5, 6]. В качестве катода использовали графит марки МПГ-6. Перед нанесением покрытия поверхность образцов обрабатывали ионами воздуха с энергией ионов порядка 1 кэВ в течение 25 мин. После этого наносили углеродное алмазоподобное покрытие вышеназванной толщины. Частота следования импульсов 2,5 Гц, при длительности импульсов разряда 0,5...0,6 мс и напряжении на емкостном накопителе 300 В. Углеродная пленка оптически прозрачна, имела интерференционную окраску, соответ-ствующую ее толщине и коэффициенту преломления. Индентирование проводили при комнатной температуре на микротвердомере ПМТ-3М пирамидой Виккерса с нагрузкой 0,098 Н. Время выдержки при этой нагрузке составляло 15 с. Толщину покрытия, а также размеры отпечатка измеряли с помощью сканирующего зондового микроскопа SMENA-А. Фотосъемка изменения интерференционной картины вокруг отпечатка индентора производилась при помощи цифровой фотокамеры OLYMPUS C-3040ZOOM непосредственно после разгрузки, а также через 24 и 72 ч (рис. 1, 2 и 3).

Установлено, что непосредственно после разгрузки средняя диагональ отпечатка составляла 4,7 мкм, максимальный размер интерференционной области – 25 мкм, глубина кратера вблизи отпечатка – 0,4 мкм (см. рис. 1,а). Через 24 ч средний размер диагонали не изменился, в то время как максимальный размер зоны деформации уменьшился до 20 мкм, а глубина кратера до 0,2 мкм (см. рис. 1,б). Через 72 ч зона интерференции не наблюдалась, остался только отпечаток от индентора (см. рис.1,в).

Интересной особенностью зоны деформации является ее смещение относительно отпечатка, что, скорее всего, свидетельствует о неоднородности упругопластичных свойств подложки.

Рис.1. Изменение интерференционной картины вокруг отпечатка при нагрузке P = 0,098H, толщина покрытия 170 нм; а – сразу после снятия нагрузки; б – через 24 ч; в – через 72 ч

При расположении отпечатков в непосредственной близости друг от друга (на расстоянии 15 мкм) область деформации представляет собой *суперпозицию* областей деформации от каждого из отпечатков (см. рис. 2). Неоднородность и кинетика процесса во времени сохраняются такой же, как в предыдущем случае.

Рис. 2. Объединение областей интерференции у близко расположенных друг от друга отпечатков. Нагрузка 0,098 Н, толщина покрытия 170 нм: а – сразу после разгрузки; б – через 24 ч; в – через 72 ч

Уменьшение толщины твердого углеродного конденсата до 100 нм практически не изменяет максимальной зоны деформации, однако уменьшается глубина кратера до 0,15 мкм, а время полного исчезновения деформации сокращается до 24 ч (см. рис. 3).

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3.

При увеличении толщины покрытия до 200 нм также наблюдается эффект восстановления, однако деформированная область не имеет такой интенсивной равномерной окраски, и процесс протекает значительно быстрее и ограничивается одним часом.

В работах [9, 10] предложена модель индентирования системы «пластичная подложка – твердое покрытие», позволяющая объяснить распределение зон пластической и упругой деформации при внедрении в поверхность индентора. Однако нами для учета сложной картины деформации при индентировании использовалось компьютерное моделирование этого процесса для системы «пластичная подложка без твердого покрытия» и «с твердым покрытием» с помощью программы ELCUT, основанной на методе конечных элементов [11].

Результаты компьютерного моделирования (рис. 4) свидетельствуют об изменении картины распределения напряжений в подложке при индентировании в случае отсутствия и наличия углеродной алмазоподобной пленки. Эти результаты являются прекрасной иллюстрацией защитной роли твердого покрытия, нанесенного на пластичную подложку, заключающейся в перераспределении нагрузки на большую поверхность и, соответственно, уменьшении величины давления. Это приводит к изменению соотношения между процессами упругой и пластической деформации.

Достаточно неожиданным оказался эффект *распределенного во времени* (24 и 72 ч) процесса восстановления зоны деформации вокруг отпечатка индентора. Объяснение этого явления возможно при учете особенностей углеродного конденсата [7, 8]. Эти пленки обладают твердостью на уровне натурального алмаза, модулем упругости порядка 600 ГПа, а самое главное, аномально высокими значениями внутренних напряжений сжатия, достигающих 10...12 ГПа [8].

Рис. 4. Моделирование процесса индентирования с нагрузкой 0,098 Н: а – пластичная подложка, E = 70 ГПа; б – такая же подложка со сверхтвердым углеродным алмазоподобным покрытием, модуль упругости пленки E = 600 ГПа

В случае пластичной подложки, высокого значения адгезионной прочности между пленкой и подложкой, а также при условии отсутствия хрупкого разрушения защитного покрытия можно предложить возможный механизм восстановления поверхности после микроиндентирования, связанный с релаксацией внутренних напряжений сжатия в покрытии. Достаточно большое время восстановления может быть в основном связано с медленными диффузионными процессами в самой пленке (перераспределением дефектов, внесенных микроиндентированием, под действием неоднородных полей внутренних напряжений). Этот процесс вероятно можно интенсифицировать в результате термического воздействия, однако в рамках данной работы такие эксперименты не проводились.

Необходимо отметить, что наблюдаемый нами эффект имеется в достаточно узком диапазоне толщины твердого углеродного покрытия (100... 170 нм), что связано с характеристиками как материала подложки, так и покрытия, а также величиной внутренних напряжений. С увеличением толщины покрытия до 200 нм интерференционная картина в области, прилегающей к отпечатку, не наблюдается.

Таким образом, в настоящей работе мы наблюдали явление, которое в дальнейшем можно использовать для визуализации и анализа деформаций при индентировании, а также для оценки общей деформации системы "сверхтвердая пленка – пластичная подложка". Установлено, что эффект восстановления деформированной области вокруг отпечатка после микроиндентирования поверхности жесткого диска компьютера с тонкой алмазоподобной пленкой может происходить только при определенном соотношении между толщиной углеродного покрытия и внутренними напряжениями в нем.

ЛИТЕРАТУРА

1.S.G. Bull, A.M. Korsunsky. Mechanical properties of thin carbon overcoats *//Tribology International*. 1998, v. 31, N 9, p. 547–551.

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3.

2.В.К. Григорович. Твердость и микротвердость металлов. М.: «Наука», 1976, 230 с.

3.Ю.И Головин, В.И Иволгин, В.В Коренков, Р.И. Рябко. Определение комплекса механических свойств материалов в нанообъемах методами наноиндентирования //Конденсированные среды и межфазные границы. 2001, т. 3, № 2, с. 122–135.

4.И.Ю. Головин, В.И Иволгин, Р.И. Рябко. Вязкоупругое восстановление различных материалов в области динамического наноконтакта //Письма в ЖТФ. 2004, т. 30, в. 5, с. 64–69.

5.А.И. Маслов, Г.К. Дмитриев, Ю.Д. Чистяков. Импульсный источник углеродной плазмы для технологических целей //Приборы и техника эксперименma. 1985, № 3, с. 146–149.

6.В.П. Гончаренко, А.Я. Колпаков, А.И. Маслов. Способы получения алмазных и алмазоподобных покрытий, особенности применяемого оборудования //Материалы VII Конференции стран СНГ по проблеме «Радиационная повреждаемость и работоспособность конструкционных материалов», Белгород, 1997.

7.Arup Gangopadhyay. Mechanical and tribological properties of amorphous carbon films *//Tribology Letters*. 1998, N 5, p. 25–39.

8.V.N. Inkin, G.G. Kirpilenco, A.J. Kolpakov. Internal stresses in ta-C films deposited by pulse arc discharge method *//Diamond and Related Materials*. 2001, N 10, p. 1103–1108.

9.Xi Chen, Joost J. Vlassak. A numerical study on the measurement of thin film mechanical properties by mean of nanoindentation. Harvard University, Cambridge, MA 02138.

10.Zeng Zuwei. Adhesion Mechanics of Thin-Films Indentation //School of Mechanical & Production Engineering. Nanyang Technology University, Singapore, January, 2004, 120 p.

11.Пакет ELCUT. Студенческая версия 4.2.2.4., ТОР, Санкт-Петербург.

МИКРОІНДЕНТИРУВАННЯ ПОВЕРХНІ ЖОРСТКОГО ДИСКУ З ВУГЛЕЦЕВИМ АЛМАЗОПОДІБНИМ ПОКРИТТЯМ

М.В. Камишанченко, О.Я. Колпаков, І.Ю. Гончаров, О.А. Дручиніна

Досліджена залежність часу відновлення деформованої області навкруги відбитка після микроіндентирування поверхні жорсткого магнітного диску персонального комп'ютера з вуглецевим алмазоподібним покриттям товщиною 100...200 нм, отриманим імпульсним вакуумно-дуговим методом, від товщини захисного покриття та взаємного розташування відбитків. Розміри відбитків вимірювали за допомогою скануючого зондового мікроскопу SMENA-A. Виявлено ефект відновлення деформованої поверхні з алмазоподібним вуглецевим покриттям через 24 та 72 години. Запропоновано можливий механізм даного явища, пов'язаний з релаксацією внутрішніх напружень стиснення покриттів.

MICROINDENTIFICATION OF HARD DISK SURFACE WITH CARBON DIAMOND-LIKE COATING

N.V.Kamyshanchenko, A.Ya. Kolpakov, I.Yu. Goncharov, O.A. Druchinina

Dependence of time of recovery of the deformed area around of a print after microindenting surface of a rigid magnetic disk of a personal computer with a carbon diamond-like film thickness of 100...200 nm, deposited by pulse arc discharge method, from thickness of a sheeting and a relative positioning of prints is investigated. The sizes of prints measured with the help scanning probe microscope SMENA-A. The effect of restoration of the deformed surface with a diamond-like carbon coating in 24 and 72 hours is found out. The possible mechanism of the given phenomenon connected to a relaxation of internal stresses of compression in a covering is offered.