УСТРОЙСТВА ФИНИШНОЙ ОЧИСТКИ ТЕХНОЛОГИЧЕСКИХ ГА-ЗОВ НА ОСНОВЕ НЕРАСПЫЛЯЕМЫХ ГЕТТЕРОВ ИЗ СПЛАВОВ Zr-Al, Zr-Fe, Hf-Fe

В.М. Ажажа, Р.В. Ажажа, П.Н. Вьюгов, А.П. Свинаренко, В.М. Шулаев Институт физики твёрдого тела, материаловедения и технологий ННЦ ХФТИ, г.Харьков, Украина

Описаны устройства глубокой финишной очистки технологических газов Ar, He, Ne, H_2 , N_2 . Предложены геттерные материалы, используемые для этих целей. Приведены результаты масс-спектрометрических исследований состава газов по поглощаемым газам.

Высокочистые газы находят широкое применение в технологии производства высокочистых материалов, световолновой оптике, термообработке и сварке химически активных металлов и сплавов, в производстве микросхем. Почти на всех этапах их получения и изготовления из них изделий технологические операции проводятся или в вакууме, или в среде защитной атмосферы. В качестве защитных сред, как правило, используются инертные газы (гелий, аргон, и др.). Большинство потребителей получают аргон и азот в стальных баллонах с региональных заводов большой мощности.

Состав примесей в аргоне, производимом на этих заводах, должен соответствовать TV-6-21-12-73 (O_2 – 2 ppm, N_2 – 20 ppm, H_2O – 3 ppm (минус 68 °C – точка росы), метан – 1 ppm, H_2 – 2 ppm, углеводороды не нормируются. Однако чистота получаемого в баллонах аргона может быть значительно хуже этих TV прежде всего потому, что отечественные газонаполнительные станции не имеют специализированных установок для соответствующей подготовки баллонов, в том числе и для глубокой осушки путём термотренировки.

Необходимо отметить, что сверхглубокая очистка технологических газов в местах их производства лишена смысла, так как при их транспортировке по трубопроводам или в стандартных стальных баллонах они неизбежно загрязняются различными примесями. Эти примеси проникают в трубопроводы из атмосферного воздуха через микротрещины в сварных или разъёмных соединениях. В табл. 1 приведены характеристики газовых примесей, которые могут содержаться в газообразном аргоне.

Поэтому наиболее эффективными и перспективными методами значительного повышения качества газов является их глубокая финишная очистка на специализированных установках, расположенных непосредственно возле технологического оборудования, где эти газы используются.

В настоящее время известно много технологических приёмов, позволяющих улавливать примеси, содержащиеся в технологических газах.

Таблица 1 **Параметры газов, которые могут содержаться в виде примесей в аргоне**

Газ	Температура ра кипения, К	Тройная точка, К	Критическая температура, К	Кинетический диаметр (по Леннорду- Джонсу), Å	Дипольный момент, ед. $C\Gamma CE$, $\cdot 10^{18}$	Квадру- польный момент, Å
Ar	87,10	83,80	151,10	3,40		_
O_2	90,18	54,36	154,38	3,46	ı	0,10
N_2	77,36	63,34	126,07	3,64	ı	0,31
H_2	20,40	13,95	33,30	2,89	_	_
H ₂ O	373,16	273,16	646,20	2,65	1,8	_
CO_2	194,66	216,56	304,10	3,30	_	0,64
CO	81,70	66,00	133,20	3,76	0,12	0,33
NO_2	294,16	263,86	413,0	3,30	1,29	_
NO	121,36	109,59	180,26	2,17	0,07	_
CH ₄	111,70	90,70	191,10	3,80	1	_
C ₂ H ₄	169,46	103,96	282,66	3,90	_	0,48
C_2H_6	184,56	89,86	305,46	3,80	_	0,27
C ₆ H ₆	353,36	278,70	561,66	5,85	_	_
NH ₃	240,16	195,46	405,56	2,60	1,4	_

Анализ существующих устройств очистки инертных газов, применяемых в них сорбционных материалов и арматуры, проведённый по классификационным индексам МКИ 1,2,3,4: ВОІД, СОІВ, ГОВЧ, ГОЧГ, НОІ, НОІК при использовании годовых систематических указателей к патентным фондам ЕПВ и РСТ, Реферативной информации «Изобретения стран мира» (разделы BOI, COI, C12, ГОЧ, HOI), Официального бюллетеня «Открытия, изобретения» (раздел «Патенты»), Библиографического указателя патентов, имеющихся в фондах ХФ ВЦПУ и ВПТБ, информационных материалов ведущих фирм в области очистки газов, таких как «Air Products and chemical Juc» (США), «Union Carbide» (США), «Nippon Sanso **K.K.**» (Япония), «Boc (Великобритания), «SAES Getters» (Италия) и др., журнальной литературы, собственных разработок [1], позволил провести сопоставление различных

схем очистки инертных газов, применяемых в них сорбционных материалов и аппаратуры, предложить и обосновать схему очистки инертных газов, её основные элементы, используемые сорбенты и арматуру.

На рис.1 показана принципиальная схема устройства очистки инертных газов и азота. В блоке предварительной очистки основным элементом является адсорбент, в качестве рабочего вещества которого используются молекулярные сита (цеолиты) и угольные адсорбенты.

Основной составляющей блока является геттерный элемент, главной функцией которого является улавливание примесей химически активных газов: кислорода, водорода, углеводородов, воды до парциальных давлений на несколько порядков ниже, чем это происходит в адсорбере (рис. 2).

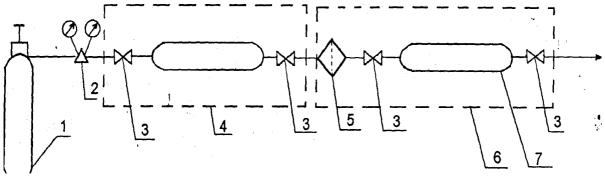


Рис. 1. Принципиальная схема устройства очистки инертных газов и азота: 1 – баллон с очищаемым газом; 2 – редуктор; 3 – вентиль; 4 – блок предварительной очистки инертных газов (адсорбер); 5 – фильтр; 6 – блок финишной очистки ГОИ 1,2; 7 – геттерный элемент

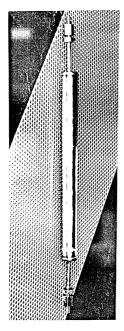


Рис. 2. Внешний вид геттерного элемента

Исходя из анализа сорбционных свойств химически активных металлов и интерметаллических соединений в качестве рабочего материала геттера выбраны сплавы на основе циркония и гафния. Эти материалы имеют рабочую температуру 200...400 °C, могут быть неоднократно использованы после соот-

ветствующей химической активации. Сплав Zr-Al получали по технологии кальциетермического восстановления тетрафторида циркония с добавками алюминия [2].

С целью изучения возможности получения более глубокой степени очистки инертных газов, а также расширения номенклатуры очищаемых газов в данной работе были также получены и исследованы геттерные материалы на основе сплавов Zr-Al, Zr-Al-P3M, Zr-Fe, Zr-Fe-P3M, Hf-Fe.

Сплавы Zr-Al-P3M, Zr-Fe-P3M, один состав Zr-Fe и сплавы Hf-Fe были получены в ИФТТМТ ННЦ XФТИ. В качестве P3M был взят самарий. Сплавы были получены сплавлением компонентов в дуговой печи с нерасходуемым электродом под давлением очищенного аргона.

Предварительные эксперименты и оценочные расчёты показывают, что для удовлетворения задаваемых параметров по глубине очистке и ресурсу работы геттерный элемент должен иметь рабочую длину ~300 мм и рабочий диаметр не менее 35 мм. Для изготовления корпуса геттерного элемента и деталей его запорной арматуры используется нержавеющая сталь вакуумного переплава. Герметизация элемента осуществляется без применения мягких материалов, таких как отожжённая медь, индий. Конструкция элемента не содержит непродуваемых участков и застойных зон, в которых бы могли скапливаться вещества, вносящие неконтролируемые

примеси в очищаемый газ. И изготовление всех деталей геттерного элемента, и его сборка осуществляются со строгим соблюдением правил вакуумной гигиены.

Из полученных сплавов были приготовлены образцы для масс-спектрометрических исследований, результаты которых приведены в табл. 2.

Сопоставление и анализ этих результатов показывает, что наиболее приемлемым материалом для использования в устройствах очистки инертных газов является сплав Zr(84)-Al(16).

Применение сплавов цирконий-алюминий с добавками самария в системах очистки не улучшает существенно их функциональные возможности, но заметно увеличивает их стоимость вследствие высокой цены на самарий.

Сплавы на основе цирконий-железо могут быть использованы для очистки азота, если их применять в диапазоне температур \sim 200...400 °C, и инертных газов, если их применять при температурах 600... 700 °C [3].

Измерения, проведённые со сплавами гафнийжелезо, показали, что их характеристики существенно не отличаются от характеристик сплавов цирконий-железо, но они значительно дороже из-за высокой стоимости гафния.

Масс-спектрометрические исследования геттерных элементов на основе сплавов Zr-Al, Zr-Fe и Hf-Fe показали высокую эффективность очистки аргона и азота. В Институте высокочистых веществ РАН (г. Нижний Новгород) применением высокочувствительной аппаратуры показано, что удаление активных примесей (O₂, CO₂, CO) происходит до уровня не более 8·10⁻⁶ %моль. На основании проведённых исследований разработаны различные системы финишной очистки технологических газов. Принципиальная схема устройства очистки технологических газов приведена на рис.3, а основные технические данные и характеристики устройства очистки показаны в табл.3.

Таблица 2

Результаты масс-спектрометрических исследований различных геттерных сплавов

Система	Состав вес.%	Метод получе- ния		вия ак- ации Время, мин	Темпе- ратура испыта- ния, К	Поглощаемые газы
Zr-Al	Zr(84)-Al(16)	Кальцие-терми- ческое восста- новление	800	60	20 200 350 600	H ₂ ,O ₂ H ₂ ,O ₂ ,N ₂ H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂ ,CH ₄ O ₂ ,N ₂ ,H ₂ O,CO,CO ₂ ,CH ₄
Zr-Al	Zr(84)-Al(16)	Сплавление компонентов	800	60	20 200 350 600	H ₂ ,O ₂ H ₂ ,O ₂ ,N ₂ H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂ ,CH ₄ O ₂ ,N ₂ ,H ₂ O,CO,CO ₂ ,CH ₄
Zr-Al-Sm	Zr(80)-Al(15)- Sm(5)	Сплавление компонентов	800	60	20 200 350 600	H ₂ ,O ₂ H ₂ ,O ₂ ,N ₂ H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂ ,CH ₄ O ₂ ,N ₂ ,H ₂ O,CO,CO ₂ ,CH ₄
Zr-Fe	Zr(51)-Fe(49)	Дуговая плавка	800	60	100 200 400 700	H ₂ ,O ₂ H ₂ ,O ₂ H ₂ ,O ₂ ,H ₂ O H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂
Zr-Fe	Zr(76)-Fe(24)	Сплавление компонентов	800	60	100 200 400 700	H ₂ ,O ₂ H ₂ ,O ₂ H ₂ ,O ₂ ,H ₂ O H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂
Zr-Fe-Sm	Zr(72)-Fe(23)- Sm(5)	Сплавление компонентов	800	60	100 700	H ₂ ,O ₂ H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂
Hf-Fe	Hf(80)-Fe(20)	Сплавление компонентов	800	60	100 700	H ₂ ,O ₂ H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂
Hf-Fe	Hf(81)-Fe(19)	Сплавление компонентов	800	60	100 700	H ₂ ,O ₂ H ₂ ,O ₂ ,N ₂ ,H ₂ O,CO,CO ₂

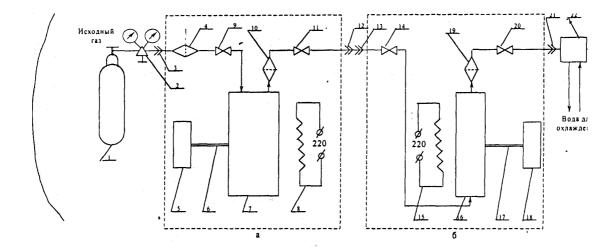


Рис. 3. Принципиальная схема устройства очистки технологических газов:

1 — баллон с очищаемым газом; 2 — редуктор; 3, 12, 13, 21, 23 — герметичные разъёмы; 4, 10, 19 — фильтр; 5 — устройства задания и контроля температуры адсорбера; 6 — термопара адсорбера; 7 — адсорбер; 8 — нагреватель адсорбера; 9, 11, 14, 20 — вентиль; 15 — нагреватель геттерного патрона; 16 — геттерный патрон; 17 — термопара геттерного патрона; 18 — устройства задания и контроля температуры геттерного патрона; 22 — теплообменник

Таблица 3

Основные технические данные и характеристики устройства очистки

Наименование	Значение
Очищаемый газ	Ar (He,Ne), H ₂ , N ₂
Содержание примесей в исходном газе, ppm	Менее 100
Содержание примесей в очищенном газе, ppm	0,1
Максимально допустимое давление в устройстве, МПа	2,0
Рабочее давление, МПа	0,1
Производительность, м ³ /ч (задаётся техническим заданием заказчика)	От 1 до 3
Потребляемая мощность (для устройства очистки производительностью 2 м³/ч)	
- режим активации, кВт - режим очистки. кВт	<1 кВт 400 Вт

ЛИТЕРАТУРА

- **1.** В.С. Коган, В.М. Шулаев, Адсорбционно-диффузионные вакуумные насосы (вакуумные насосы с нераспыляемым геттером): Обзор. М.: ЦНИИатоминформ, 1990.
- **2.** М.Л. Коцарь, В.М. Ажажа, М.И. Борисов и др. Технология получения геттерных порошков для
- глубокой очистки газов // Высокочистые вещества. 1992, в. 4 с. 108.
- 3. Р.В. Ажажа, С.С. Кривуля, А.П. Свинаренко. Исследование сорбционных характеристик не распыляемого геттера на основе сплава Zr-Fe // ВАНТ. Серия «Вакуум, чистые материалы, сверхпроводники». 2000, № 5, с. 19-21.

ПРИСТРОЇ ФІНІШНОГО ОЧИЩЕННЯ ТЕХНОЛОГІЧНИХ ГАЗІВ НА ОСНОВІ НЕРОЗПИЛЯНИХ ГЕТЕРОВ ІЗ СПЛАВІВ Zr-Al, Zr-Fe, Hf-Fe

В.М. Ажажа, Р.В. Ажажа, П.Н. В'югов, О.П. Свинаренко, В.М. Шулаєв

Описані пристрої глибокого фінішного очищення технологічних газів \overline{Ar} , He, Ne, $\overline{H_2}$, $\overline{N_2}$. Запропоновані гетерні матеріали, що використовуються для цієї мети. Приведені результати мас-спектрометричних досліджень складу газів по газах, що поглинаються.

DEVICES OF THE FINISH CLEANING OF TECHNOLOGICAL GASES ON THE BASIS OF UNEVAPORABLE GETTERS FROM THE Zr-Al, Zr-Fe, Hf-Fe ALLOYS

V.M. Azhazha, R.V. Azhazha, P.N. V'yugov, A.P. Svinarenko, V.M. Shulayev

Means of deep final purification of technological gases Ar, He, Ne, H₂, N₂ are described. Getter materials that are used for this purpose are proposed. The results of mass-spectrometric researches of gases composition on absorbent gases are given.