О РАВНОВЕСНЫХ КОЭФФИЦИЕНТАХ РАСПРЕДЕЛЕНИЯ ПРИМЕСЕЙ У ЭЛЕМЕНТОВ IV-VI ГРУПП ПСЭ

А.Д. Осипов

Национальный научный центр «Харьковский физико-технический институт» г.Харьков, Украина, тел.:(057)335-62-93

Рассмотрены связи между равновесными коэффициентами распределения примесей $K^{A}_{0 \text{ limB}}$ в ряде систем элементов IV-VI группы ПСЭ и параметрами P_b , содержащими энергии ионизации, зарядовые числа атомов и другие величины. Показано, что использование параметров P_b позволяет определить значения $K^{A}_{0 \text{ limB}}$ для многих примесей в металлах-растворителях W, V, Z_r выражениями, аналогичными известным, но без введения температур плавления элементов.

При изучении растворимости примесей в металлах установлены различные корреляционные соотношения, зависимости, включающие энергии кристаллической решетки, атомизации, атомные размеры, валентности, зарядовые числа, температуры плавления элементов и др. [1,2].

Важными характеристиками растворимости примесей B в металле A являются равновесные коэффициенты распределения примесей K^{A}_{OB} , которые определяются выражением [2]:

$$K^{A}_{OB} = C_{SB}/C_{LB},$$
 (A)

где C_{SB} , C_{LB} — концентрации примесей в твердой и жидкой фазах соответственно.

Для ряда систем металл-примесь показано, что величину $K^{A}{}_{OB}$ или предельные равновесные коэффициенты распределения примесей $K^{A}{}_{OlimB}$ можно оценить из выражения [2]:

$$K^{A}_{0limB} = C_{IA} exp(C_{2A} T^{ouk}_{MB}), \qquad (1)$$

где C_{1A} , C_{2A} — постоянные для данного металларастворителя A; $T^{out}{}_{MB}$ — температуры плавления элементов примеси В для данной кристаллической решетки. Для некоторых примесей используются гипотетические температуры плавления $T^{\Gamma}{}_{MB}$ [2]. У различных систем существенно различаются постоянные в (1), отличаются от действительных температур плавления элементов гипотетические температуры.

Для многих систем металл-растворительпримесь зависимости, аналогичные (1), трудно использовать, или они неизвестны [2].

Представляет интерес определить основные связи с отмеченными величинами, выделить наиболее существенные из них у данных систем металл-примесь.

Для различных характеристик металлов и их соединений известен ряд зависимостей от атомноэлектронных параметров, которые могут определять также рассматриваемые свойства материалов [1,2,4].

Целью данной работы является установление связей между равновесными коэффициентами распределения примесей у ряда систем элементов

IV-VI групп ПСЭ и параметрами, включающими энергии, ионизации атомов, их валентности, зарядовые числа и другие величины.

Используются параметры P_b , аналогичные введенным ранее [4], содержащие комплекс аппроксимирующих функций атомно-электронных величин.

Выделяя наиболее существенные факторы, выражение, определяющее расчетные равновесные коэффициенты распределения примесей B в металле-растворителе $A\ K^A_{0limB}$ для многих систем A-B, можно представить в виде [2]:

$${}^{P}K^{A}_{olimB}=K_{o6}exp[C_{1}P_{bl}-C_{2}P_{A}],$$
 (2) где K_{o6} - постоянная; C_{l} , C_{2} — коэффициенты, учитывающие вклад параметров P_{bl} , P_{A} , (P_{b}) , соответственно; $P_{bl}\approx P_{b}=C_{b}\left(Z_{b}+Z^{n}\right)E_{vi}/E_{v0}d_{0}/d_{b}\cdot F_{v}$; Z_{b} — числа электронов связи; Z — зарядовые числа; $E_{vi}\approx E_{i}$, E_{i} — i -я энергия ионизации атомов, эВ [5], E_{v0} =1эВ; d_{b} — кратчайшее межатомное расстояние элемента примеси В, нм, d_{0} = 0,1 нм, $n\approx$ 0,7.

При вычислениях принималось:

$$K_{oe}$$
=1, C_b =3,6, C_2 =1, F_v =1; далее указаны индексы " i " при E_i .

На рис.1-3 показаны связи экспериментальных равновесных коэффициентов распределения примесей K^A_{0limB} по данным [2,3] и их расчетных значений ${}^PK^A_{0limB}$ у ряда систем элементов IV-VI групп ПСЭ.

На рис.1 приведены расчетные коэффициенты для примесей в вольфраме, вычисленные по формуле (1) из работы [2], (точки 1) и по формуле (2) (точки 2).

При вычислениях коэффициентов распределения примесей в W принимались следующие значения величин в формуле (2):

$$C_1 = 7,7 \cdot 10^{-4}; P_A = 2,6; i = 7,$$

 Z_b равны в основном номеру группы элементов N_Γ в ПСЭ, у Сг Z_b =3.

Отклонения от экспериментальных коэффициентов расчетных значений, вычисленных по формуле (2), для большинства элементов примесей близко к вычисленным по формуле (1) (см. рис.1). При использовании соотношений аналогичных (1) для ряда систем металл-примесь наблюдаются значительные отклонения от экспериментальных данных или такие соотношения неизвестны.

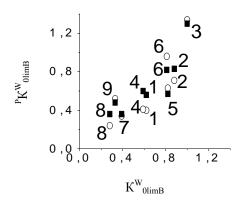


Рис. 1. Связь расчетных и экспериментальных равновесных коэффициентов распределения примесей в W:

$$1 - Cr; 2 - Mo; 3 - W; 4 - V; 5 - Nb; 6 - Ta; 7 - Ti; 8 - Zr; 9 - Hf. (Точки $1 - {}^{0}$, точки $2 - \blacksquare$)$$

В связи с этим в данной работе для этих систем приведены вычисления коэффициентов только по формуле (2).

На рис.2 показана связь с экспериментальными данными [2,3] расчетных равновесных коэффициентов распределения примесей в ванадии, вычисленных по формуле (2).

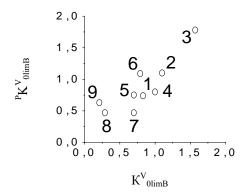


Рис. 2. Связь расчетных и экспериментальных равновесных коэффициентов распределения примесей в V:

При расчетах принимались следующие значения величин в (2):

$$C_1 = 8 \cdot 10^{-4}$$
; $P_A = 2,4$; $i = 7$,

 Z_b равны таким же значениям, как и при вычислениях для металла-растворителя вольфрама.

На рис.3 приведены зависимости для циркония.

Относительно близкое соответствие экспериментальным данным [2,3] для Zr получено при следующих значениях величин в формуле (2): $C_I = 10^{-3}$; $P_A = 2,3$; Z_b равно 4 для всех элементов, кроме Cr, у которого $Z_b = 3$; для примесей Ti, Zr, Hf i = 7; Nb,Ta i = 6; Cr, Mo, W, V i = 5. Приведенные значения величин в формуле (2) характерны в основном также и для металла-растворителя Hf.

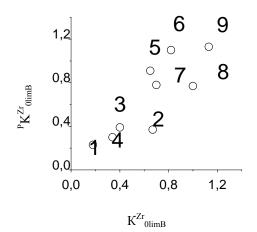


Рис. 3 Связь расчетных и экспериментальных равновесных коэффициентов распределения примесей в Zr:

Как видно из рис.1-3, имеются определенные соответствия экспериментальным данным коэффициентов, вычисленных по формуле (2) при использованных значениях величин, у ряда систем элементов IV-VI групп ПСЭ.

При изучении растворимости примесей в цирконии и других металлах в условиях термомеханических, радиационных и других воздействий возможно влияние многих факторов, в частности, связанных с фазовыми превращениями, образованием различных дефектов, вакансий. При этом нужно учитывать изменения межатомных расстояний, электроотрицательности атомов, энергии образования вакансий и др. [1,2,6,7]. Использование функций, аналогичных содержащимся в выражении (2), позволяет определить некоторые из отмеченных характеристик, установить связи для них.

У циркония, его соединений имеются особенности, сложные зависимости характеристик, связанных с растворимостью примесей и др. [1,6,7].

При больших изменениях скорости охлаждения у циркония наблюдаются кинетические ступени полиморфных превращений в интервале температур $\sim 800...1130 \; \mathrm{K} \; [7 \;].$

$$T_{nn}^{p} = T_{no} (C_{vi} P_{b1}^{n} - C_{v2} F_{v}^{n}),$$
 (3) где E_{jv}^{p} - постоянная, $C_{v2} F_{v}^{n}$ - малая величина, C_{vi} - коэфициент, $P_{b1}^{n} \approx P_{b}$.

При использовании функций, аналогичных применяемым в формуле (2), значений E_{vi} , величины T^{p}_{m} , вычисленные по (3), близки к известным экспериментальным данным для циркония [7].

Расчетные энергии образования вакансий E^{p}_{fv} для металлов IV-VI групп ПСЭ при использовании функций параметра P_b можно определить из выражения:

$$E_{fv}^{p} = E_{vo} \cdot F_{fv}, \tag{4}$$

где $E_{v\theta}$ - постоянная, $F_{fv} \approx P_{b.}$

Значения E_{fv}^{p} , вычисленные по (4) при $E_{vi} = E_7$ в P_{b_i} близки к экспериментальным величинам E_{iv} для циркония [6].

Функции, аналогичные приведенным в (2), определяют также электроотрицательность χ ряда элементов.

Расчетные значения χ^p для металлов IV-VI групп вычисляем из выражения:

$$\chi^p = \chi_o F_x + \chi_z, \tag{5},$$

 $\chi^p = \chi_o F_x + \chi_z$, (5), где χ_o - постоянная, χ_z - малое слагаемое, $F_\chi \sim E_{vb}^a$

Для циркония значения χ^p , близкие к известным χ , получены при $E_{vi}=E_{7}$.

Для расчетных кратчайших межатомных расстояний d^p выполняются аналогичные связи, определяемые выражением:

$$d^{p} = d_{c}F_{d} + d_{z}, (6)$$

где d_c - постоянная, d_z - малое слагаемое, $F_d \approx E^{-a}_{vi}$ Для циркония d^p близко к экспериментальной

величине d [5] при $E_{vi} = E_{7.}$

выводы

Таким образом, равновесные коэффициенты распределения примесей K^{A}_{olimB} у многих элементов IV-VI групп ПСЭ в металлах-растворителях W, V, Zr и некоторые другие характеристики в значительной мере определяются функциями, содержащими энергии ионизации, зарядовые числа атомов и другие величины.

Полученные зависимости для равновесных коэффициентов распределения примесей аналогичны известным, но при этом не используются температуры плавления элементов.

ЛИТЕРАТУРА

- 1. Н. Марч, В. Кон, П. Вашишта и др. Теория неоднородного электронного газа / Под ред. С. Лундквиста и Н. Марча / Пер. с англ. М.: «Мир», 1987, 400 с.
- 2. М. Бартел, Э. Буринг, К. Хайн, Л.М. Кухарж. Кристаллизация из расплавов: Справ. изд. / Пер. с нем. М.: «Металлургия», 1987, 320 с.
- 3. Я. Драпала, Л. Кухарж, Г.С. Бурханов. Периодическая зависимость коэффициентов распределения примесей от атомного номера примеси // Неорганические материалы. 1998; T.34, №2, c.165-178.
- 4. А.Д. Осипов Хрупкопластичный переход у силицидов тугоплавких металлов // Порошковая металлургия. 1992, № 9, с.88-91.
- 5. Свойства элементов. В двух частях. Ч.1. Физические свойства: Справочник. 2-е изд. М.: «Металлургия», 1976, 600 с.
- 6. В.Ф. Зеленский, И.М. Неклюдов, Т.П. Черняева Радиационные дефекты и распухание металлов. Киев: «Наук. думка», 1988, 294 с.
- 7. Д.А. Мирзаев, В.М. Счастливцев, В.Г. Ульянов и др. Влияние ускоренного охлаждения на полиморфное превращение в цирконии // ФММ. 2004, T.98, № 1, c.69-75.

ПРО РІВНОВАЖНІ КОЕФІЦІЄНТИ РОЗПОДІЛУ ДОМІШОК У ЕЛЕМЕНТІВ IV-VI ГРУП ПСЕ

О.Д. Осипов

Розглянуто зв'язки між рівноважними коефіцієнтами розподілу домішок $K^{A}_{0 \text{ lim}B}$ у ряді систем елементів IV-VI групи ПСЕ і параметрами Рь, що містять енергії іонізації, зарядні числа атомів і інші величини. Показано, що використання параметрів Рb дозволяє визначити значення $K_{0 \text{ limB}}^{A}$ для багатьох домішок в металах-розчинниках W, V, Zr виразами, аналогічними відомим, але без введення температур плавлення елементів.

ABOUT EOUILIBRIUM DISTRIBUTION COEFFICIENTS OF IMPURITIES AT ELEMENTS OF THE IV-VI GROUPS IN PERIODIC TABLE

A.D. Osipov

Communications between the equilibrium distribution coefficients OF impurities $K^{A}_{0 \text{ limB}}$ in some elements of the IV-VI group in periodic table and the R_b parameters, containing energies of ionization, charge numbers of atoms and other data, are considered. It is shown, that the use of the R_b parameters allows to define the values $K_{0 \text{ limB}}^A$ for many impurities in the metalssolvents W, V, Zr by known expressions, but without introduction of temperatures of melting of elements.