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1. INTRODUCTION

At the end of 2003, E. Witten looked again [1] at the
connection between N=4 supersymmetric Yang-Mills
(SYM) theory and string theory using the twistor ap-
proach [2]. In contrast to the conventional AdS/CFT
correspondence (between string theory in five-
dimensional anti-de Sitter space [AdS] and conformal
field theories [CFT] in four-dimensional Minkowski
space, the conformal boundary of AdSs) [4], the relation
above establishes a link between the weak coupling
limits on both sides and, hence, it can be checked per-
turbatively. This led to the development of a new tech-
nique to compute gauge theory amplitudes [3] (the Ca-
chazo-Svréek-Witten [CSW] or MHV diagram rules,
see below) and renewed the interest in the Penrose twis-
tor program [2] of replacing spacetime by twistors.

2. MHV YANG-MILLS AMPLITUDES,
TWISTORS AND SUPERTWISTORS
2.1. MHV AMPLITUDES THROUGH BOSONIC
SPINORS
The amplitude for the scattering of n gauge bosons
with 2 positive and (n — 2) negative helicities has the
+form (see [5, 6] and refs. therein)

n

A(1,2,...,n) =22 igh2Tr(t® ...1%)

4
<IJ> i (1)
<12><23>...<nl>
n
where 22 is a numerical factor, g is the YM coupling
constant, 7r(¢t% ...t% ) is the trace of the product of n

gauge group generators, and the ‘one-particle matrix
elements’ <12 >, ... , <nl > are expressed through the
contraction of two bosonic spinors, one for each gluon
state, e.g.,

<12>= 20005 =P Ao i =72l == <21>. (2)

Specifically, 7 and J in (1) ( A(1,2,...,n) oc< IJ >4 )
refer to two positive helicity gluons, while the gluons
with n # [,J are assumed to have negative helicity.

Notice that the maximally helicity violating or MHV
amplitude (1) is holomorphic: it depends on the A's
through their contractions <12>, etc. In contrast, the com-

plex conjugate spinors Ay = (AL)*,.... A% = (AL)*

etc., the contractions

[1.2]:= 2% 2% =—[2.1], are not present in (2) (they are
involved in the conjugate, ‘mostly plus’, MHV amplitudes
where all the # gluons but two have positive helicity).

One may ask, why the amplitudes can be expressed in

of which are denoted by

terms of just # bosonic spinors Ai, ? The answer is that a

bosonic spinor can be used to describe the on-shell mo-
mentum and the helicity of a massless particle. The mo-
mentum of such particle is light-like, p2 = p,p# =0, a

condition that is solved in spinor space by the Penrose
expression which gives p,, in terms of a single bosonic

spinor [2],

Paa = pﬂaé‘a =g e < Pu
1 = 1 =
:510#1::50#a0,101“.

(€)

The light-likeness of the vector p, in (3) follows from
oHEY +oVEH =2gH for the relativistic Pauli matri-
ces oM =ck,, &H =6H2 which gives pou PP =
p268 =0 since pugp® =2y e A%AP  vanishes
identically,

[Z,Z]: 2% %4 = WP Qg Ap =0 (s =—ghay,

The gluon polarization vector & is defined to be
lightlike and orthogonal to the lightlike momentum,

£2=0,eMp 1, =0. This can be again solved in terms of
the same bosonic spinor A or its complex conjugate A

The two basic solutions corresponding to negative and
positive helicity particles,
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. AL, X u, 10
o R Al 01 + o Tava
gad Z(i),ﬁ s 80[(2 < u,ﬁ(i) S ) (4)

are constructed in terms of 4 and A and contain a

constant reference spinor @, (u, = (ig)"). The relativ-

istic invariance condition corresponds to the require-
ment that the observable quantities are independent of
the choice of the reference spinor u .

Thus, all the kinematical information on the on-shell
state of a gauge boson, its helicity and its lightlike mo-
mentum, are encoded in a single bosonic spinor. This is
the reason why the scattering vertex amplitude for n
gauge bosons can be condensed in an expression written
in terms of bosonic spinors, as (1) above.

2.2. THE CACHAZO-SVRCEK-WITTEN
OR MHV DIAGRAM TECHNIQUE INSPIRED
BY THE TWISTOR STRING

The diagram technique proposed by Cachazo,
Svréek and Witten [3] consists in cutting the Feynman
diagram in MHV pieces (which is always possible [3])
and then treating them as vertices connected by scalar
propagators. Clearly, there is an immediate problem: by
cutting a Feynman diagram into MHV pieces, one gets
generally subdiagrams in which one or more legs corre-
spond to virtual particles, i.e. particles that are off-shell
and for which the basic Penrose representation (3) does
not hold. The prescription proposed in [3], and checked
to be true inside and beyond [6] the domain of the origi-
nal N=4 supersymmetric Yang-Mills (SYM) context, is
to associate to a virtual particle the bosonic spinor de-

fined by A,(p) = pge@?®, where @%is an arbitrary

reference spinor. Relativistic invariance then requires
that the amplitude 4 is independent of the choice of the
reference spino, 04/0w =0. This condition has been

shown to hold for tree and one-loop diagrams in N=4
SYM theory, and checked for some two-loop and some
non- and less supersymmetric theories [6].

The equivalence of the MHV and the Feynman dia-
gram calculus was originally proved for the tree dia-
grams of N=4 SYM theory [3]. It was then extended to
one-loop diagrams [3] and also checked for some
higher-loop ones as well as for less supersymmetric
(N=2, N=1 and non-supersymmetric N=0) YM theories
(see [6] for a recent review). However, the original
version was developed for N=4 SYM theories and was
inspired by the twistor string model [1], which pos-
sesses N=4 supersymmetry and is a string model formu-
lated in the space of N=4 supertwistors. The action
principles which lie beyond the twistor string [1,7,8]
and its spacetime (superspace) formulation will be the
main subject here.

To begin our discussion, we should briefly address
two questions: 1) what is a twistor? and 2) what is a
supertwistor?

2.3. PENROSE TWISTORS AND FERBER
SUPERTWISTORS

A twistor [2] can be understood as a Dirac spinor; it
has four complex components in two Weyl spinors,
Y& =(Ay,u%) e C*, and provides the spinorial represen-
tation for the conformal group SO(2, 4) as well as the
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fundamental representation for the (locally isomorphic)
SU(2, 2) = Spin(2, 4) group.

Twistor space is considered to be a projective space
because twistors that differ in a complex scale parame-
ter z are identified,

Y?%zY? =YY% =(A,,u)eCP3. (5)

The reason for this identification is the obvious complex
scale invariance of the Penrose incidence relation

u* =x% 2, , x4 =xHEH, (6)

which defines a spacetime point x* or, more precisely,
a lightlike line in Minkowski space,
249 (7,x) =x2 + A% 1% | The incidence relation (6)

provides the general solution for the constraint

Yy Y? = ,u%—u%l, =0. [In a twistor formulation
of the massless superparticle, the quantum counterpart
of this constraint fixes the helicity s, which appears as a
constant, 2s, in its r.4.s.].

Supertwistors, the supersymmetric generalization of
the Penrose twistors, were introduced by Ferber [9]. The
N-extended supertwistor,

Y2 = (Y, 0) = (Ao u%,m) e CUN) | (i=1,..,N), in-
cludes, in addition to the two Weyl spinors in the twis-
tor Y2, N fermionic (Grassmann odd) variables
n;,i=1,...,N, and defines the fundamental
representation space of SU(2,2|N).

Using the complex scaling Y ~ zYZ as an equiva-
lence relation, the supertwistors become homogeneous

coordinates of the projective superspace cpGM ,

¥ 3N
Y= (Y4) = (g ) e POV

minj = =1;m; (7
i=1,..,N.

The above scaling Y ~ zYZ appears as a symme-

try of the Penrose-Ferber incidence relations,
uo = xf 2, =08
aa .— yHxzxaa .— oo aYeaNoai
xf =xpEH% = x4 +2i0804,

(®)

which involve the coordinates ZM = (x#,0%,6%") of
N-extended D=4 superspace and define a (1|N)-

dimensional subsuperspace R™ in this N-extended
superspace

xaa = xaa 4 gpaja

él-a = Hl-a + K'l'ﬂa,
(e} = RAM).

)

where the «; are N fermionic parameters. This RUN) is
the Sorokin-Tkach-Volkov-Zheltukhin worldline super-
space [10], the simplest example of the superworld-
volume of the superembedding approach to superbranes
[11, 12]; superworldlines of this type were first intro-
duced in the context of the spinning superparticle [13].

3. TWISTOR STRING ACTION(S)

The basic worldsheet fields of the twistor string
models are the supertwistors (7). At present there are
three main versions of the twistor string action: (i) the



constrained CP“*® sigma model by Witten [1]; (ii) the
open string model by Berkovits [7] involving two su-
pertwistors; and (iii) the simplest one, proposed by
Siegel in [8] (see [14] for further discussion and refer-
ences).

The action for the Siegel closed string model is
given by [8]

S = j prett AT VYT a2
- [ @ vy &)+ Lo

Ys = (Y)Y Qps = (Ag,—u®2i7!) is  the
SU(2,2|N)-adjoint of YZ (eq. (7)), er* =d&émett (&)
are the
ettt heTm =d 2§M is the invariant surface element of

(10)

where

worldsheet zweibein  one-forms and

the worldsheet W?2. The covariant derivative
V=ettV,, +e7"V__=d—-iB involves the U(1)-
connection B, which serves as a Lagrange multiplier for
the constraint

YsYZ = u® — %A, +2inin; =0. (11)

Finally, in (10), Lg is the Lagrangian for the world-

sheet fields that are used to construct the Yang-Mills
symmetry current. As noted in [7], one can use e.g., the

worldsheet fermionic fields w! in the fundamental
representation of the gauge group. Then,

d2eLg = %e“ A@rdy! —dyp!)

in the notation of [14].
The Lagrangian of the open string model (ii) by
Berkovits [7] is given by

S=[prett AYSV(Y Z)—e ™ AYEV(Y*Y)

+[ 2 d?E(L +1E).
It contains two supertwistors, one left-moving Y~ and

one right-moving Y+Z | and also two copies of the ‘YM

current’ degrees of freedom, which are ‘glued’ by
boundary conditions on O0W?2. The Lagrangian form

integrated over the open worldsheet W2 is actually the
sum of Siegel’s Lagrangian in (10) and its right-moving
counterpart. Finally, the original action for the cp©®
twistor string model (i) by Witten [1], expressed in the
present notation, can be found in [14].

4. THE TWISTOR STRING
AS A TENSIONLESS SUPERSTRING

As it was shown in [14], an equivalent form of the
action (10) is given by the tensionless superstring action
from [15,16] (called twistor-like Lorentz-harmonics
formulation of the null superstring for reasons explained
in [14]). This means that, ignoring its YM part, the
action (10) can be written in D=4, N=4 superspace as

j (12)

2 et A(dxOe — id@IGH 1109 dTUN T, Ay,
where 192 = @M1 = d7T142 + dol142 is the pull-

S =f prett ATI% 2,0, =

back to the worldsheet /> of the flat supervielbein on

D=4, N=4 superspace,

[19¢ = dx%* —idf@*@ %' +i0%d@ %' . This action pos-

sesses an irreducible K -symmetry
Oxxd =i5,000% —i0%5,.6097,
0 0% =Kk A%, 5,09 =gil¥,
O A% =6, A% =5 et =0.

This is obtained from the infinitely reducible x -sym-

metry [17], with 5,08 =Kk, 119%,65,0% =T19%k},,

(13)

by using the relation T12¢ ~ 1¢A% which provides the
general solution of the equations of motion for the bos-
onic spinor field A (which is an auxiliary field in the
action (12)). The K -symmetry reduces the number of
degrees of freedom to the same 8+(16/2) of the twistor
string (10).

The simplest way to check the equivalence [14] of
(12) to the first, supertwistor part of the Siegel twistor
closed action (10), is to use Leibniz’s rule to move the
derivative to act on the bosonic spinors A and to take
into account that the Penrose-Ferber incidence relations
(8) provide the general solution of the constraint (11).

The fact that the twistor string is tensionless [8] can
be understood by observing the conformal invariance of
the action (10) or (12), which implies the absence of any
dimensionful parameters in it. [If such parameters were
introduced by changing the dimensions of the basic
variables, they could equally be removed by a suitable
redefinition of the fields].

The Berkovits open twistor string model (ii) is
equivalent to the tensionless superstring moving in the
direct product of two copies of the D = 4, N = 4 super-
space [14].

5. ON THE TENSIONFUL PARENT
OF THE TWISTOR STRING

The tensionless nature of the twistor string was first
noticed by Siegel [8], who also posed the question of
the existence of a possible tensionful parent. This can
also be understood [14] as a consequence of the results
in [15,16] according to which the mass spectrum of the
intrinsically tensionless or null string is continuous,
while the also tensionless quantum twistor string [1,7,8]
is assumed to describe the Yang-Mills theory ampli-
tudes and, hence, must have massless fields in the quan-
tum state spectrum.

In fact, since in the conformal algebra the dilatation
operator does not commute with the square of the mo-
mentum operator, a continuous mass spectrum or a
zero-masses one are the only alternatives for a confor-
mally invariant theory. The quantization of the ten-
sionless superstring, which leads to massless fields in
the spectrum [18], is formulated in terms of stringy
oscillators, which are the suitable variables for the ten-
sionful string. In contrast, those of the null-string are
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rather the spacertime coordinates and momenta. As a
result, the quantization of the twistor string should cor-
respond to the quantization of the tensionless limit of a
tensionful superstring, rather than that of the intrinsi-
cally tensionless, or null, superstring.

In [8], Siegel discussed the possible tensionful par-
ents of the twistor superstring in a purely bosonic con-
text, proposing a tensionful QCD string [19] as its bos-
onic part. The inclusion of fermions brings in new ques-
tions. In particular, as far as we assume that the ten-
sionless limit has to be a smooth one, the number of
degrees of freedom should not change in this limit and,
thus the number of gauge symmetries should be the
same, including the number of fermionic x -symmetries
already mentioned.

A detailed discussion of these questions can be
found in [14]. In short, if we were interested just in the
N=1, 2 counterparts of the tensionless twistor string,
their tensionful counterparts would be the D=4, N=1,2
Green-Schwarz superstrings, as can be seen in the
framework of the spinor moving frame or Lorentz har-
monics formulation [20]. In the more interesting N=4
case, the tensionful parent action requires an extension
of the bosonic sector of superspace so that, to obtain the
twistor string, the tensionless limit has to be accompa-
nied by dimensional reduction. One could conjecture
that the tensionful parent of the twistor string is given
by the D=10 Green-Schwarz superstring; to describe
such a relation in a simple way one would have to use
the spinor moving frame or the Lorentz harmonics for-
mulation of the D=10 Green-Schwarz superstring
[20,21].

6. CONCLUDING REMARKS

We would like to mention that, at the present level
of our understanding, the Green-Schwarz superstring
does not appear as the only possible candidate for a
tensionful parent of the twistor string. As discussed
in [14], one can also consider supersymmetric string
models in enlarged tensorial superspaces [22], which
have found applications in higher spin theories [23].

According to [18], the quantization of a ten-
sionless limit of the superstring should result in a
higher spin theory. On the other hand, in the light of
our identification of the twistor string with the zero-
tension superstring, it turns out that the twistor string
description of the Yang-Mills amplitudes [1,7] should
be related to the quantization of such a tensionless
superstring. Thus, it seems that there are three possi-
ble ways of quantizing the zero-tension superstring:
(a) that in [15,16] of the intrinsically tensionless or
null superstring (which gives an unphysical continu-
ous mass spectrum); (b) the quantization in [18],
which leads to higher spin theory and, finally (c) the
ones associated to the twistor string path integral
[1,7,8]. In view of the previous discussion, the quan-
tizations (b) and (c), which should lead to massless
fields, have to be associated with the tensionless limit
of a tensionful superstring. These two quantizations
are, nevertheless, seemingly inequivalent. It would be
interesting to understand the interrelations and differ-
ences between these quantizations.
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TBUCTOPHAS CTPYHA: HOBBIII ®OPMAJIU3M JIIsI U3YUYEHUSA TEOPUM SHTA-MUJLJICA
U EE MPOCTPAHCTBEHHO-BPEMEHHBIE ®OPMYJUPOBKH

HU.A. Banooc, X.A. 0e Ackappaza, I]. Muxenv-Hcnanus

ITpencraBnen kpaTKuii 0030p Tak HAa3bIBAEMOI'O MOJXO0Ja TBHCTOPHOW CTPYHBI K MCCIIEIOBAHHIO CYNEPCHMMET-
puuHbIX Teopuit Sura-Mmuica. Ocoboe BHIMaHHUE YAETIACTCS Pa3InIHbIM (POPMYyIHPOBKaM MOJIeINeH (cymep)cTpyH
B IPOCTPAHCTBE CYNEPTBUCTOPOB U MX CYNEPIPOCTPAHCTBEHHOH (opme. Mbl 00CykaeM KIAaCCHUECKYI0 IKBHBA-
JICHTHOCTH ACUCTBUS TBHCTOPHON CTPYHHI B popme 3urens u JlopeHn-rapmonundeckoil popmymupoBku (N=4) cy-
HEepCTPyHBI 0€3 HATSKEHUs! (HyNb CYNEPCTPYHBI), a TaKKEe OTMEYacM BO3MOXKHYIO CBSI3b TBHCTOPHOW CTPYHBI C
JecsiTuMepHol cyneperpyHoil I'puna-1lIBapua u ¢ MoaensMu B pacUIMPEHHOM CYNEPIPOCTPAHCTBE, KOTOPOE HC-
IMMOJIb30BAJIOCH PAHEE I OIMMCAHUA BbICIIUX CIIMHOB.

TBICTOPHA CTPYHA: HOBUI ®OPMAJII3M JIJ1S1 BABUEHHS TEOPIM SSTHI'A-MIJLJICA
I ii MIPOCTOPOBO-TUMYACOBI ®OPMY.JIIOBAHHSA

IL.A. Banooc, X.A. 0e Ackappaza, I]. Mukxenv-Icnania

[TpeacTaBneHo KOPOTKHUI OIVISA Tak 3BAHOTO IIJIXOMy TBICTOPHOI CTPYHH JI0 AOCIIKEHHs CyNepCUMETPHYHUX
Teopidt Snra-Mimica. OcobnuBa yBara NpuALISIETbCS Pi3HUM (pOpMYITIOBaHHIM MOJIENEH (CyIep)CTpyH Yy MpocTopi
CynepTBicTOpiB M iXHIH cynepnpocTopoBiii ¢popmi. My 00roBOprO€EMO KJIaCH4HYy EKBIBaJICHTHICTb Aii TBiICTOpHOI
cTpyHH y opmi 3iress i Jlopenn-rapmoniiiHoro gopmymoBanuas (N=4) cynepcTpyHu 6e3 Harsry (HyJb Cynepct-
PYHH), @ TaKOX BiJ3HAYAEMO MOXJIUBHH 3B'I30K TBICTOPHOI CTPYHH 3 JIECSATHBHUMIPHOIO cymepcTpyHoro ['pina-
[IBapua it 3 MOAETAMH B POILUIMPEHOMY CYTIEPIIPOCTOPI, 0 BUKOPUCTOBYBAIIOCS PAHIIIIE IJIsl OMUCY BUIIUX CITiHIB.
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