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We give a brief review of the twistor string approach to supersymmetric Yang-Mills theories with an emphasis 

on the different formulations of (super)string models in supertwistor space and their superspace form. We discuss 
the classical equivalence among the Siegel closed twistor string action and the Lorentz harmonics formulation of the 
(N=4) tensionless superstring, and notice the possible relation of the twistor string to the (D=10) Green-Schwarz 
superstring action, as well as to models in the enlarged, tensorial superspaces that are relevant in higher spin theo-
ries. 
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1. INTRODUCTION  
At the end of 2003, E. Witten looked again [1] at the 

connection between N=4 supersymmetric Yang-Mills 
(SYM) theory and string theory using the twistor ap-
proach [2]. In contrast to the conventional AdS/CFT 
correspondence (between string theory in five-
dimensional anti-de Sitter space [AdS] and conformal 
field theories [CFT] in four-dimensional Minkowski 
space, the conformal boundary of AdS5) [4], the relation 
above establishes a link between the weak coupling 
limits on both sides and, hence, it can be checked per-
turbatively. This led to the development of a new tech-
nique to compute gauge theory amplitudes [3] (the Ca-
chazo-Svrček-Witten [CSW] or MHV diagram rules, 
see below) and renewed the interest in the Penrose twis-
tor program [2] of replacing spacetime by twistors. 

2. MHV YANG-MILLS AMPLITUDES, 
TWISTORS AND SUPERTWISTORS 

2.1. MHV AMPLITUDES THROUGH BOSONIC 
SPINORS 

The amplitude for the scattering of n gauge bosons 
with 2 positive and (n − 2) negative helicities has the 
+form (see [5, 6] and refs. therein)  
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 is a numerical factor, g is the YM coupling 
constant,  is the trace of the product of n 
gauge group generators, and the ‘one-particle matrix 
elements’ <12 >, ... , < n1 > are expressed through the 
contraction of two bosonic spinors, one for each gluon 
state, e.g., 
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Specifically, I and J in (1) ( ) 
refer to two positive helicity gluons, while the gluons 
with  are assumed to have negative helicity. 
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Notice that the maximally helicity violating or MHV 
amplitude (1) is holomorphic: it depends on the 's 
through their contractions <12>, etc. In contrast, the com-
plex conjugate spinors 
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etc., the contractions of which are denoted by 

*)nα(λ

[ ] [ 1,2:2,1 21 −≡= α
α λλ �
� ] , are not present in (2) (they are 

involved in the conjugate, ‘mostly plus’, MHV amplitudes 
where all the n gluons but two have positive helicity). 

One may ask, why the amplitudes can be expressed in 
terms of just n bosonic spinors ? The answer is that a 
bosonic spinor can be used to describe the on-shell mo-
mentum and the helicity of a massless particle. The mo-
mentum of such particle is light-like, , a 
condition that is solved in spinor space by the Penrose 
expression which gives  in terms of a single bosonic 
spinor [2], 
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The light-likeness of the vector  in (3) follows from 

 for the relativistic Pauli matri-

ces  which gives  

 since 
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The gluon polarization vector  is defined to be 
lightlike and orthogonal to the lightlike momentum, 

. This can be again solved in terms of 

the same bosonic spinor  or its complex conjugate 

µε

0,02 == µµεε p

λ λ . 
The two basic solutions corresponding to negative and 
positive helicity particles, 

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 11-15. 11 



 

[ ] ><
== +−

)(

)(

)( ,
,

, i

i
i

i

i
i

u
u

u
u

λ
λ

ε
λ
λε αα

αα
αα

αα
�

�
�

� , (4) 

are constructed in terms of  and λ λ  and contain a 
constant reference spinor α�u  ( *(α = )α�uu ). The relativ-
istic invariance condition corresponds to the require-
ment that the observable quantities are independent of 
the choice of the reference spinor u . 

Thus, all the kinematical information on the on-shell 
state of a gauge boson, its helicity and its lightlike mo-
mentum, are encoded in a single bosonic spinor. This is 
the reason why the scattering vertex amplitude for n 
gauge bosons can be condensed in an expression written 
in terms of bosonic spinors, as (1) above. 

2.2. THE CACHAZO-SVRČEK-WITTEN  
OR MHV DIAGRAM TECHNIQUE INSPIRED  

BY THE TWISTOR STRING 
The diagram technique proposed by Cachazo, 

Svrček and Witten [3] consists in cutting the Feynman 
diagram in MHV pieces (which is always possible [3]) 
and then treating them as vertices connected by scalar 
propagators. Clearly, there is an immediate problem: by 
cutting a Feynman diagram into MHV pieces, one gets 
generally subdiagrams in which one or more legs corre-
spond to virtual particles, i.e. particles that are off-shell 
and for which the basic Penrose representation (3) does 
not hold. The prescription proposed in [3], and checked 
to be true inside and beyond [6] the domain of the origi-
nal N=4 supersymmetric Yang-Mills (SYM) context, is 
to associate to a virtual particle the bosonic spinor de-
fined by αααα ωλ ��pp =)( , where αω � is an arbitrary 
reference spinor. Relativistic invariance then requires 
that the amplitude A is independent of the choice of the 
reference spino, 0=∂ωA∂ . This condition has been 
shown to hold for tree and one-loop diagrams in N=4 
SYM theory, and checked for some two-loop and some 
non- and less supersymmetric theories [6]. 

The equivalence of the MHV and the Feynman dia-
gram calculus was originally proved for the tree dia-
grams of N=4 SYM theory [3]. It was then extended to 
one-loop diagrams [3] and also checked for some 
higher-loop ones as well as for less supersymmetric 
(N=2, N=1 and non-supersymmetric N=0) YM theories  
(see [6] for a recent review). However, the original 
version was developed for N=4 SYM theories and was 
inspired by the twistor string model [1], which pos-
sesses N=4 supersymmetry and is a string model formu-
lated in the space of N=4 supertwistors. The action 
principles which lie beyond the twistor string [1,7,8] 
and its spacetime (superspace) formulation will be the 
main subject here. 

To begin our discussion, we should briefly address 
two questions: 1) what is a twistor? and 2) what is a 
supertwistor? 

2.3. PENROSE TWISTORS AND FERBER  
SUPERTWISTORS 

A twistor [2] can be understood as a Dirac spinor; it 
has four complex components in two Weyl spinors, 

, and provides the spinorial represen-
tation for the conformal group SO(2, 4) as well as the 

fundamental representation for the (locally isomorphic) 
SU(2, 2) ≈ Spin(2, 4) group. 

4ˆ C),( ∈=Υ ααα µλ �

Twistor space is considered to be a projective space 
because twistors that differ in a complex scale parame-
ter z are identified, 

3ˆˆˆ CP),( ∈=Υ⇒Υ≈Υ ααααα µλ �z . (5) 

The reason for this identification is the obvious complex 
scale invariance of the Penrose incidence relation 

ααµµαααααα σλµ ���� ~:, xxx == ,  (6) 

which defines a spacetime point  or, more precisely, 
a lightlike line in Minkowski space, 

µx

αααααα λτλτ ��� += xxx ),(ˆ . The incidence relation (6) 
provides the general solution for the constraint 

0:ˆˆ =−=ΥΥ αααααα λµµλ �� . [In a twistor formulation 
of the massless superparticle, the quantum counterpart 
of this constraint fixes the helicity s, which appears as a 
constant, 2s, in its r.h.s.]. 

Supertwistors, the supersymmetric generalization of 
the Penrose twistors, were introduced by Ferber [9]. The 
N-extended supertwistor, 
 )4(ˆ C),,(),(: N

ii ∈=Υ=Σ ηµλη ααα �

α̂Υ
Nii ,,1, …=

Υ , (i=1,…,N), in-
cludes, in addition to the two Weyl spinors in  the twis-
tor , N fermionic (Grassmann odd) variables 
η , and defines the fundamental 
representation space of SU(2,2|N). 

Using the complex scaling  as an equiva-
lence relation, the supertwistors become homogeneous 
coordinates of the projective superspace 
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The above scaling  appears as a symme-
try of the Penrose-Ferber incidence relations, 
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which involve the coordinates ),,(: i
i

M xZ ααµ θθ �=

)|1( N

 of 
N-extended D=4 superspace and define a (1|N)-
dimensional subsuperspace  in this N-extended 
superspace  
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where the κi are N fermionic parameters. This  is 
the Sorokin-Tkach-Volkov-Zheltukhin worldline super-
space [10], the simplest example of the superworld-
volume of the superembedding approach to superbranes 
[11, 12]; superworldlines of this type were first intro-
duced in the context of the spinning superparticle [13]. 

)|1( NR

3. TWISTOR STRING ACTION(S) 
The basic worldsheet fields of the twistor string 

models are the supertwistors (7). At present there are 
three main versions of the twistor string action: (i) the 
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constrained  sigma model by Witten [1]; (ii) the 
open string model by Berkovits [7] involving two su-
pertwistors; and (iii) the simplest one, proposed by 
Siegel in [8] (see [14] for further discussion and refer-
ences).  

)4|3(CP

The action for the Siegel closed string model is 
given by [8] 
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Π
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 is the 

SU(2,2|N)-adjoint of (eq. (7)),  
are the worldsheet zweibein one-forms and 
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 is the invariant surface element of 

the worldsheet W . The covariant derivative 
 involves the U(1)-

connection B, which serves as a Lagrange multiplier for 
the constraint 

.  (11) 02 =+−=ΥΥ Σ
Σ iii ηηλµµλ αααα ��

Finally, in (10),  is the Lagrangian for the world-
sheet fields that are used to construct the Yang-Mills 
symmetry current. As noted in [7], one can use e.g., the 
worldsheet fermionic fields  in the fundamental 
representation of the gauge group. Then,  

GL

Iψ

)(
2
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in the notation of [14]. 
The Lagrangian of the open string model (ii) by 

Berkovits [7] is given by 
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It contains two supertwistors, one left-moving  and 

one right-moving , and also two copies of the ‘YM 

current’ degrees of freedom, which are ‘glued’ by 
boundary conditions on ∂ . The Lagrangian form 

integrated over the open worldsheet W  is actually the 
sum of Siegel’s Lagrangian in (10) and its right-moving 
counterpart. Finally, the original action for the CP  
twistor string model (i) by Witten [1], expressed in the 
present notation, can be found in [14]. 
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2
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4. THE TWISTOR STRING  
AS A TENSIONLESS SUPERSTRING 

As it was shown in [14], an equivalent form of the 
action (10) is given by the tensionless superstring action 
from [15,16] (called twistor-like Lorentz-harmonics 
formulation of the null superstring for reasons explained 
in [14]). This means that, ignoring its YM part, the 
action (10) can be written in D=4, N=4 superspace as 

,)(
ˆ

2

2

∫
∫

+−∧=
=Π∧=

++

++

αααααααα
αααα

λλθθθθ
λλ

����
��

i
i

i
iW

W
diiddxe

eS (12) 

where  is the pull-

back to the worldsheet W  of the flat supervielbein on 
D=4, N=4 superspace,  
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sesses an irreducible -symmetry 
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0=== ++eκακακ δλδλδ � . 
This is obtained from the infinitely reducible -sym-
metry [17], with 

κ
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α
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by using the relation αααα λλ �� ≈Π −−

λ
κ

 which provides the 
general solution of the equations of motion for the bos-
onic spinor field  (which is an auxiliary field in the 
action (12)). The -symmetry reduces the number of 
degrees of freedom to the same 8+(16/2) of the twistor 
string (10). 

The simplest way to check the equivalence [14] of 
(12) to the first, supertwistor part of the Siegel twistor 
closed action (10), is to use Leibniz’s rule to move the 
derivative to act on the bosonic spinors  and to take 
into account that the Penrose-Ferber incidence relations 
(8) provide the general solution of the constraint (11). 

λ

The fact that the twistor string is tensionless [8] can 
be understood by observing the conformal invariance of 
the action (10) or (12), which implies the absence of any 
dimensionful parameters in it. [If such parameters were 
introduced by changing the dimensions of the basic 
variables, they could equally be removed by a suitable 
redefinition of the fields]. 

The Berkovits open twistor string model (ii) is 
equivalent to the tensionless superstring moving in the 
direct product of two copies of the D = 4, N = 4 super-
space [14]. 

5. ON THE TENSIONFUL PARENT  
OF THE TWISTOR STRING 

The tensionless nature of the twistor string was first 
noticed by Siegel [8], who also posed the question of 
the existence of a possible tensionful parent. This can 
also be understood [14] as a consequence of the results 
in [15,16] according to which the mass spectrum of the 
intrinsically tensionless or null string is continuous, 
while the also tensionless quantum twistor string [1,7,8] 
is assumed to describe the Yang-Mills theory ampli-
tudes and, hence, must have massless fields in the quan-
tum state spectrum. 

In fact, since in the conformal algebra the dilatation 
operator does not commute with the square of the mo-
mentum operator, a continuous mass spectrum or a 
zero-masses one are the only alternatives for a confor-
mally invariant theory. The quantization of the ten-
sionless superstring, which leads to massless fields in 
the spectrum [18], is formulated in terms of stringy 
oscillators, which are the suitable variables for the ten-
sionful string. In contrast, those of the null-string are 
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rather the spacertime coordinates and momenta. As a 
result, the quantization of the twistor string should cor-
respond to the quantization of the tensionless limit of a 
tensionful superstring, rather than that of the intrinsi-
cally tensionless, or null, superstring. 

In [8], Siegel discussed the possible tensionful par-
ents of the twistor superstring in a purely bosonic con-
text, proposing a tensionful QCD string [19] as its bos-
onic part. The inclusion of fermions brings in new ques-
tions. In particular, as far as we assume that the ten-
sionless limit has to be a smooth one, the number of 
degrees of freedom should not change in this limit and, 
thus the number of gauge symmetries should be the 
same, including the number of fermionic -symmetries 
already mentioned. 

κ

A detailed discussion of these questions can be 
found in [14]. In short, if we were interested just in the 
N=1, 2 counterparts of the tensionless twistor string, 
their tensionful counterparts would be the D=4, N=1,2 
Green-Schwarz superstrings, as can be seen in the 
framework of the spinor moving frame or Lorentz har-
monics formulation [20]. In the more interesting N=4 
case, the tensionful parent action requires an extension 
of the bosonic sector of superspace so that, to obtain the 
twistor string, the tensionless limit has to be accompa-
nied by dimensional reduction. One could conjecture 
that the tensionful parent of the twistor string is given 
by the D=10 Green-Schwarz superstring; to describe 
such a relation in a simple way one would have to use 
the spinor moving frame or the Lorentz harmonics for-
mulation of the D=10 Green-Schwarz superstring 
[20,21].  

6. CONCLUDING REMARKS 
We would like to mention that, at the present level 

of our understanding, the Green-Schwarz superstring 
does not appear as the only possible candidate for a 
tensionful parent of the twistor string. As discussed 
in [14], one can also consider supersymmetric string 
models in enlarged tensorial superspaces [22], which 
have found applications in higher spin theories [23]. 

According to [18], the quantization of a ten-
sionless limit of the superstring should result in a 
higher spin theory. On the other hand, in the light of 
our identification of the twistor string with the zero-
tension superstring, it turns out that the twistor string 
description of the Yang-Mills amplitudes [1,7] should 
be related to the quantization of such a tensionless 
superstring. Thus, it seems that there are three possi-
ble ways of quantizing the zero-tension superstring: 
(a) that in [15,16] of the intrinsically tensionless or 
null superstring (which gives an unphysical continu-
ous mass spectrum); (b) the quantization in [18], 
which leads to higher spin theory and, finally (c) the 
ones associated to the twistor string path integral 
[1,7,8]. In view of the previous discussion, the quan-
tizations (b) and (c), which should lead to massless 
fields, have to be associated with the tensionless limit 
of a tensionful superstring. These two quantizations 
are, nevertheless, seemingly inequivalent. It would be 
interesting to understand the interrelations and differ-
ences between these quantizations.  
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ТВИСТОРНАЯ СТРУНА: НОВЫЙ ФОРМАЛИЗМ ДЛЯ ИЗУЧЕНИЯ ТЕОРИЙ ЯНГА-МИЛЛСА  

И ЕЁ ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ФОРМУЛИРОВКИ 

И.А. Бандос, Х.A. де Аскаррага, Ц. Микель-Испания  

Представлен краткий обзор так называемого подхода твисторной струны к исследованию суперсиммет-
ричных теорий Янга-Миллса. Особое внимание уделяется различным формулировкам моделей (супер)струн 
в пространстве супертвисторов и их суперпространственной форме. Мы обсуждаем классическую эквива-
лентность действия твисторной струны в форме Зигеля и Лоренц-гармонической формулировки (N=4) су-
перструны без натяжения (нуль суперструны), а также отмечаем возможную связь твисторной струны с 
десятимерной суперструной Грина-Шварца и с моделями в расширенном суперпространстве, которое ис-
пользовалось ранее для описания высших спинов.  

 
ТВІСТОРНА СТРУНА: НОВИЙ ФОРМАЛІЗМ ДЛЯ ВИВЧЕННЯ ТЕОРІЙ ЯНГА-МІЛЛСА  

І ЇЇ ПРОСТОРОВО-ТИМЧАСОВІ ФОРМУЛЮВАННЯ 

І.А. Бандос, Х.A. де Аскаррага, Ц. Микель-Іспанія  

Представлено короткий огляд так званого підходу твісторної струни до дослідження суперсиметричних 
теорій Янга-Міллса. Особлива увага приділяється різним формулюванням моделей (супер)струн у просторі 
супертвісторів й їхній суперпросторовій формі. Ми обговорюємо класичну еквівалентність дії твісторної 
струни у формі Зігеля й Лоренц-гармонійного формулювання (N=4) суперструни без натягу (нуль суперст-
руни), а також відзначаємо можливий зв'язок твісторної струни з десятивимірною суперструною Гріна-
Шварца й з моделями в розширеному суперпросторі, що використовувалося раніше для опису вищих спінів.  
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