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In a lattice formulation of the SU(2)-gluodynamics, the spontaneous generation of the chromomagnetic field at
high temperature is investigated. The procedure to study this phenomenon is developed and Monte Carlo simula-
tions are carried out on the lattices 2x8°, 4x8” and 2x16° at various temperatures. The y*-analysis of the obtained
data set indicates the presence of the spontaneously created magnetic field in the deconfinement phase.

A comparison with the results of other approaches is done.
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1. INTRODUCTION

Among interesting problems of modern cosmology
the origin of large-scale magnetic fields is intensively
attacked nowadays. Various mechanisms of the field
generation at different stages of the universe evolution
were proposed [1]. Basically they are grounded on the
idea of Fermi, Chandrasekhar and Zel'dovich that to
have the present day galaxy magnetic fields seed mag-
netic fields must be present in the early universe. These
fields had been frozen in a cosmic plasma and then am-
plified by some of the mechanisms of the field amplifi-
cation. One of the ways to produce seed fields is a spon-
taneous vacuum magnetization at high temperature T
[2,3,4,5]. Actually, this is an extension of the Savvidy
model for the QCD vacuum [6], proposed already at
T=0 and describing the creation of the Abelian
chromomagnetic fields due to a vacuum polarization, in
case of non-zero temperature. At zero temperature this
field configuration is unstable because of the tachyonic
mode in the gluon spectrum. At T # 0, the possibility of
having strong temperature-dependent and stable mag-
netic fields was discovered [4]. The field stabilization is
ensured by the temperature and field dependent gluon
magnetic mass.

Another related field of interest is the deconfinement
phase of QCD. As it was realized recently, this is not
the gas of free quarks and gluons, but a complicate in-
teracting system of them. This was discovered at RHIC
experiments [7] and observed in either perturbative
[4,8] or nonperturbative [9] investigations of the vac-
uum state with magnetic fields at high temperature. In
Refs. [4,8] the spontaneous creation of the chromomag-
netic fields of order gB~g*T* was observed in SU(2)-
and SU(3)-gluodynamics within the one-loop plus daisy
resummation accounted for. In Ref. [9] the fields of the
same order were observed in lattice simulations of two-
point correlators. In Ref. [10] the response of the vac-
uum to the influence of strong external fields at differ-
ent temperatures has been investigated and it was shown
that the confinement is restored by increasing the
strength of the applied field. These results stimulated
the present investigation. We are going to determine the
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spontaneous creation of magnetic fields in lattice simu-
lations of SU(2)-gluodynamics. In contrast to the prob-
lems in the external field, in the case of interest the field
strength is a dynamical variable which values at differ-
ent temperatures have to be determined by means of the
minimization of the free energy. This procedure is not a
simple one as in continuum because the field strength
on a lattice is quantized. To deal with this peculiarity,
we consider magnetic fluxes on a lattice as the main
objects to be investigated. The fluxes take continuous
values, and therefore the minimization of the free en-
ergy in presence of magnetic field can be fulfilled in a
usual way. These speculations serve as an explanation
of the strategy of our calculations.

One of the methods to introduce a magnetic flux on
a lattice is to use the twisted boundary conditions
(t.b.c.) [11]. In this approach the flux is a continuous
quantity. So, in what follows we consider the free en-
ergy F(p) with the magnetic flux ¢ on a lattice in the
SU(2)-gluodynamics and calculate its values at different
temperatures by means of Monte Carlo (MC) simula-
tions. We will show that the global minimum of F(¢) is
located at some non-zero value @.;, dependent on the
temperature. It means the spontaneous creation of the
temperature-dependent magnetic fields in the decon-
finement phase.

2. MAGNETIC FIELDS ON A LATTICE

In perturbation theory, the value of the macroscopic
(classical) magnetic field generated inside a system is
determined by the minimization of the free energy func-
tional. The interaction with the classical field is intro-
duced by splitting the gauge field potential in two parts:

_ 1 . 4R
A,=4,+4

s s where A5 describes a radiation field

and A_u = (O,O,Hx1 ,0) corresponds to the constant mag-

netic field directed along the third axis. However, on a
lattice, the direct detection of the spontaneously gener-
ated field strength by straightforward analysis of the
configurations, which are produced in the MC simu-
lations, seems to be problematic. Therefore, it is reason-
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able to follow the approach used in the continuum field
theory.
First, let us write down the free energy density,

F(p)=-log ; (1)

Z(p) = [[DU(@)]expt- S(U(p))} )
Here, Z(¢) and Z(0) are the partition functions at finite
and zero magnetic fluxes, respectively; the link variable
U is the lattice analogue of the potential A,. The free
energy density relates to the effective action as follows,

F(p)=S(p)-S(0), (3)
where E(go) and E(O) are the effective lattice actions
with and without magnetic field, correspondingly.

To detect the spontaneous creation of the field it is

necessary to show that the free energy density has the
global minimum at a non-zero magnetic flux, @, ,;, #0.

In what follows, we use the hypercubic lattice
L, x Li (L, < Ly) with the hypertorus geometry; L, and
L, are the temporal and the spatial sizes of the lattice,
respectively. In the limit of L; — o the temporal size
L; is related to physical temperature. The one-plaquette
action of the SU(2) lattice gauge theory can be written:

Sy =By, D N=3TrU (0] ©

X u>v
U,y () = U, (U, (x + af)U 5 (x + av)U; (x), (5)

where p=4/g’ is the lattice coupling constant, g is the
bare coupling, U,(x) is the link variable located on the
link leaving the lattice site x in the p direction, U,,(x) is
the ordered product of the link variables.

The effective action S in (3) is the Wilson action
averaged over the Boltzmann configurations, produced
in the MC simulations.

The lattice variable U,(x) can be decomposed in
terms of the unity, I, and Pauli, o;, matrices in the col-
our space,

U, (x) = 1U3(x) +io ;U (x) =

UY(x)+iU(x)  Up(x)+iU,,(x)
= 2 1 0 3 . (6)
“U,(0)+iU,(x) U,(x)-iU,(x)

The four components U j, (x) are subjected to the nor-
malization condition ZjU 7 (X)U},(x) =1. Hence, only

three components are independent.

Since the spontaneously generated field is to be the
Abelian one, the Abelian parametrization of the lattice
variables is used to introduce the magnetic field,

0 ‘ .
cos¢yel u) sin ¢#e%‘ (*)

Up(x)= -0, (x) |’ 0

—sin¢ﬂe_il“(x) cosg,e
where the angular variables are changed in the follow-
ing ranges 0, y € [-m;+n), ¢ € [0;7/2).

The Abelian part of the lattice variables is repre-
sented by the diagonal components of the matrix and

the condensate Abelian magnetic field influences the
field 0,(x), only.
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The second important task is to incorporate the mag-
netic flux in this formalism. The most natural way was
proposed by 't Hooft [11]. In his approach, the constant
homogeneous external flux ¢ in the third spatial direc-
tion can be introduced by applying the following t.b.c.:

U,u(Lt’xlax29x3) = U/L[(Oaxlax2’x3) 5
Uﬂ(XO,LS,Xz,X:;):UH(XO,O,Xz,X’j); (8)
U (x0,%1,Lg,x3) = €U 1, (x0,%1,0,x3) ;
Uﬂ(x()axlaXZ’Ls) = UH(XO,X],Xz,O) -
It could be seen, the edge links in all directions are
identified as usual periodic boundary conditions except
for the links in the second spatial direction, for which
the additional phase ¢ is added (Fig. 1). In the contin-
uum limit, such t.b.c. settle the magnetic field with the
potential Au(x)=(0,0,Hx1,0). The magnetic flux ¢ is
measured in angular units, ¢ €[0,27).

U (Xl 49) = U ({xx,0,x,140) €°
<— identified ——>¢-

<— identified —> -

v U xoXoLox) = U0ux,0x)€"

p=2
Fig. 1. The plaquette presentation of the twisted
boundary conditions

The lattice variables (in the Abelian parametrization)
in the presence of the magnetic flux ¢ are

U, (x) =

(0, (x)+p, (%)) i (%)

| cosge
—sing e
where @.(x) = ¢ for the edge links at x = (Xo, X1, L, X3)

with p =2 and @,(x) = 0 for other links.
The total flux through the plane spanned by the

sing,e ©)
=i (%) Cos¢ﬂe—i(9ﬂ ®)+9,(x) |’

plaquettes p, which affects the edge links at
x=(Xg, X1, Ls, X3) With p =2, is
g0= 2(0,+9), (10)
peplane

0,=0,(x)+0,(x+av)-0,(x+av)-6,(x).(11)
Eq. (10) is the lattice analogue of the flux in the contin-
uum O, = JSd 25 uvF - In this approach the variable

¢ describes a flux through the whole lattice plane, not
just through an elementary plaquette.
The t.b.c. for the components (9),

Uy (x) = cos(8,(x) + @, (x))cos $, (x) ;
U, (x) =sing,, (x)sin 7, (x) ;
U} (x) =sing, (x)sin 7, (x);

U, (x) =sin(8,(x) + @, (x))cos g, (x) . (12)



read

U2(x)=U2(x)cosgo—Uf,(x)sin(p, (13)

Uz(x):Ug(x)singo+Uz(x)cosgo (14)

for the edge links at x =(xo, X1, L, X3) with u=2.

The relations (13) and (14) have been implemented
into the kernel of the MC procedure in order to produce
the configurations with the magnetic flux . In this case
the flux ¢ is accounted for in obtaining a Boltzmann
ensemble at each MC iteration.

3. MC SIMULATIONS AND DATA FITS

The MC simulations are carried out by means of the
heat bath method.

The spontaneous generation of magnetic field is the
effect of order ~g* [4]. The results of MC simulations
show the comparably large dispersion. So, the large
amount of the MC data is collected and the standard y*-
method for the analysis of data is applied to determine the
effect. We consider the results of the MC simulations as
observed “experimental data”.

The effective action depends smoothly on the flux ¢
in the region @~0. Therefore, the free energy density can
be fitted by the quadratic function of the flux ¢,

F(9) = Fin +b(0~ ¢in)” - (15)

This choice is motivated also by the results obtained
already in continuum field theory [13] where it was de-
termined that free energy has a global minimum at ¢ # 0.
The parametrization (15) is the most reasonable in this
case. It is based on the effective action accounting for the
one-loop plus daisy diagrams [13],

2 2 2
ran = 18 ey (16)
2 48 ;2 yz
LT 1 32
- — —Tr[[1y(0 ,
_— 15 [0 (0)]
having g* and (g%)** orders in coupling constant. Here, H

is field strength (flux ~H), T is the temperature, p is the
normalization point, I1y(0) is the zero-zero component

of the gluon polarazation operator calculated in the exter-
nal field at the finite temperature and taken at zero mo-
mentum. The value of f=3, which was used, corresponds
to a deep perturbation regime. So, a comparison with
perturbation results is reasonable. The systematic errors in
fitting function (15) could come from not taking into ac-
count the high-order diagrams in (16). However, as it is
well-known [15], the lack of an expansion parameter at
finite temperature starts from the three-loop diagram con-
tributions that is of g® order and could not remove an ef-
fect derived in g* and g’ orders. As the finite-size effects
are concerned, in the present investigation we just made
calculations for two lattices 2x8° and 2x16° and have
derived the same results for the @, (as it will be seen
below). A more detailed investigation of this issue re-
quires much more computer resources, which were lim-
ited.

There are 3 unknown parameters, F,, b and @, in
Eq.(16). The parameter @y,;, denotes the minimum posi-
tion of the free energy, whereas the F,;;, and b are the free

energy density at the minimum and the curvature of the
free energy function, correspondingly.
The value ¢, is obtained as the result of the minimi-

zation of the z> (Fin »b> @min ) -function

2 _ 5 Fnin +D@s = Pmin)” = F ()’ .
e D(F(p)) -0

where o; is the array of the set fluxes and D(F(¢;)) is the
data dispersion. It can be obtained by collecting the data
into the bins (as a function of flux),
(F(@1) = Fyin)?
D(F(gy)= Y, 20—l (18)
iebin Mpin 1
where ny;, is the number of points in the considered bin,
Fy;, is the mean value of free energy density in the con-
sidered bin. As it is determined in the data analysis, the
dispersion is independent of the magnetic flux values .
The deviation of ¢, from zero indicates the presence of
spontaneously generated field.

55(8)5 95% C.L. o fit

3

Lattice: 2x16°
B=3.0

5

0.005 0.01 0.015

Fig. 2. )/-fit of the free energy density on lattice
2x16° for [=3.0 (grey
Duin=0.0069"00022 4t the 95% C.L.)

region describe the

The values of the generated fluxes @,;, for different
lattices (at the 95% C.L.)

Pumin 2x8’ 2x16° 48

B=3 | 0.019*001 | 0.00697:0037 | 0.00575003
= 0.011 - -

B=5 | 0.0207%9L%

The fit results are given in Table 1. As one can see,
Qmin demonstrates the 2c-deviation from zero. The de-
pendence of @, on the temperature is also in accordance
with the results known in perturbation theory: the in-
crease in temperature results in the increasing of the field
strength [4].

The fit for the lattice 2x16 at B=3.0 is shown in
Fig. 2. The maximum-likelihood estimate of F(¢) by the
whole data set is shown as the solid curve. In addition, all
¢ values are divided into 10 bins. The mean values and
the 95% confidence intervals are presented as points for
each bin. The first 7 bins contain about 600-2000 points
per bin. The large number of points in the bins allow to
find the free energy F with the accuracy which substan-

tively exceeds the dispersion, +/D(F(;)) ~ 1074, It
makes possible to detect the effect of interest. As it is also
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seen, the maximum-likelihood estimate of F(p) is in a
good accordance with the bins pointed, because the solid
line is located in the 95% confidence intervals of all bins.
The 95% confidence level (C.L.) area of the parame-
ters b and @y, is represented in Fig. 3. The black cross
marks the position of the maximum-likelihood values of b
and Qui,. It can be seen that the flux is positive deter-
mined. The 95% C.L. area becomes more symmetric with
the center at the F;;,, b and ¢, when the statistics is in-
creasing. This also confirms the results of the fitting.

Proin
' F(0)=F i *b(@-Prnn)°

0.008

0.006

0.004
0.002 2x1 63
B=3.0

0

0 0.01 0.03 0.05 b

Fig. 3. The 95% C.L. area for the parameters @,
and b, determining the free energy density dependence

on the flux @,,;, on lattice 2 x 16° for =3.0

4. DISCUSSION

The main conclusion from the results obtained is
that the spontaneously created temperature-dependent
chromomagnetic field is present in the deconfinement
phase of QCD. This supports the results derived already
in the continuum quantum field theory [4,12] and in
lattice calculations [9].

Let us first discuss the stability of the magnetic field
at high temperature. It was observed in Refs. [4,12] that
the stabilization happens due to the gluon magnetic
mass calculated from the one-loop polarization operator
in the field at temperature. This mass has the order

mrznagn ~ g2(gH)*T ~ ¢*T? as it should be because

the chromomagnetic field is of order (gH )1/ L g2T

[4]. The stabilization is a non-trivial fact that, in princi-
ple, could be changed when the higher order Feynman
diagrams to be accounted for. Now we see that the sta-
bilization of the field really takes place.

Our approach based on the joining of calculation of
the free energy functional and the consequent statistical
analysis of its minimum positions at various tempera-
tures and flux values. This overcomes the difficulties
peculiar to the description of the field on a lattice. Here
we mean that the field strength on a lattice is quantized
and therefore a non-trivial tuning of the coupling con-
stant, temperature and field strength values has to be
done in order to determine the spontaneously created
magnetic field.

We also would like to note that in the present paper
the flux dependence on temperature remains not inves-
tigated in details. This is because of the small lattice
size considered. That restricts the number of points
permissible to study. However, at this stage we have
determined the effect of interest as a whole. Even at the
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small lattice, one needs to take into consideration thou-
sands points of free energy (that corresponds to an
analysis of 5-10 millions MC configurations for differ-
ent lattices) to determine the flux value @y, at the 95%
C.L. In case of larger lattices this number and corre-
sponding computer resources should be increased con-
siderably. This problem is left for the future.

It is interesting to compare our results with that of in
Ref. [10] where the response of the vacuum on the ex-
ternal field was investigated. These authors have ob-
served in lattice simulations for the SU(2)- and SU(3)-
gluodynamics that the external field is completely
screened by the vacuum at low temperatures, as it
should be in the confinement phase. With the tempera-
ture increase, the field penetrates into the vacuum and,
moreover, increase in temperature results in existing
more strong external fields in the vacuum. On the other
hand, increase in the applied external field strength
leads to the decreasing of the deconfinement tempera-
ture. These interesting properties are closely related to
the studies in the present work. Actually, we have also
investigated the vacuum properties as an external field
problem when the field is described in terms of fluxes.
This was the first step of the calculations. The next step
was the statistical analysis of the minimum position of
free energy, in order to determine the spontaneous crea-
tion of the field. In fact, at the first step we reproduced
the results of Refs. [10] (in terms of fluxes).

Note that the present investigations also correspond
to the case of the early universe. They support our pre-
vious results on the magnetic field generation in the
standard model [13] and in the minimal supersymmetric
standard model [14]. As it was discussed by Pollock [5],
the field generated by this mechanism at the Planck era
might serve as a seed field to produce the present day
magnetic fields in galaxies.

We would like to conclude with the note that the de-
confinement phase of gauge theories is a very interest-
ing object to study. The temperature dependent mag-
netic fields living in this state influence various proc-
esses that should be taken into consideration to have an
adequate concept about them.
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CIIOHTAHHAS TEHEPAIISI MATHUTHBIX ITOJIEMA ITPU BBICOKOM TEMITEPATYPE
B SUQ2)-IT'TIOOJJUHAMMUKE HA PEIIETKE

B.U. /lemuux, B.B. Ckano3yo

HccnenoBana cioHTaHHAs FeHEpPAIMs XPOMOMATrHUTHOTO MOJISI IPH BBICOKON TEMIIEpaType B PEHIEeTOYHOH (op-
myaupoBke SU(2)-rirooaunamuku. Paspaborana mporenypa st uccienoBanus 3toro sddekra Ha pemetke. [Ipo-
BeJICHO MOJeIMpoBaHue MeTonoM Monte Kapio Ha pemerkax 2x8°, 4x8° u 2x16° npu pasiuuHbIX TeMmepaTypax.
X’-aHaIM3 MOJTYUEHHBIX JAHHBIX yKa3bIBACT HA CYIIECTBOBAHKE B (hase JEKOH(AWHMEHTA CIIOHTAHHO POXKICHHOTO
MarHuTHOro nous. IIpoBenieHO CpaBHEHHE C pe3yIbTaTaMu, OJyYeHHBIMU B APYTUX MPUOTIDKEHUSX.

CIIOHTAHHA TEHEPAIISI MATHITHUX ITOJIIB ITPA BUCOKI TEMITEPATYPI
B SU(2)-TJIIOOIMHAMIIII HA TPATIII

B.I. /lemuux, B.B. Ckano3zyo

JlocikeHo CTIOHTaHHY TeHEepallilo XpOMOMArHITHOTO TOJIsI IIPH BHCOKIH TeMIiepaTypi B TpaTKoBil hopmyIipo-
Bii SU(2)-rmoonnHamiki. Po3pobieHo npoueaypy sl JOCTIKEeHHs 1boro edekra Ha rpatii. [IpoBeneHo mose-
noBaHHs MeTogoM Monte Kapro Ha rpatkax 2x8°, 4x8° Ta 2x16° npu pisHuX TeMmeparypax. y -aHalli3 OTPUMAHUX
JAaHUX BKa3ye€ Ha HAABHICTH y (a3i AeKoH(paifHMEHTY MarHiTHOTO IIOJIS, III0 HAPOKYEThCs CrioHTaHHO. [IpoBeneHo
MOPIBHSHHSA 3 Pe3yJbTaTaMH, OTPUMaHUMH y IHIIUX HAOIVKEHHSX.
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