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We consider the Vavilov-Cherenkov radiation by a particle with arbitrary spin using the relativistic quantum
treatment of the one-photon Cherenkov emission. The probability of the one-photon emission by relativistic particle
is calculated in the framework of quantum electrodynamics using the covariant parameterization of electromagnetic

current for particle with arbitrary spin.
PACS: 13.40.Gp, 41.60.-m

1. INTRODUCTION

The theory for the Vavilov-Cherenkov radiation
(VCR) of electrical and magnetic multipoles has a long
history. The VCR radiation of a magnetic dipole and of
electric and magnetic dipoles was first considered by
Ginzburg (1940) and Frank (1942) [1,2]. In 1952 ap-
peared two other publications by Ginzburg and Frank
on the same subject [3,4], and they were followed on by
their publications [5,6] in 1984. In detail this subject
was considered in the books by Ginzburg and Frank
[7,8] (Ginzburg regarded electric and magnetic dipoles
only, Frank considered VCR of arbitrary electrical and
magnetic multipoles). Note also that the exact electro-
magnetic fields and the VCR of electric, magnetic and
toroidal dipoles moving uniformly in unbounded non-
dispersive medium was considered in [9,10].

To calculate the probability of VCR for particle of
arbitrary spin S we take a relativistic expression for
electromagnetic current through “physical” form factors

0,(¢*) and M,(¢*) [11-13]. The expression for elec-

tromagnetic current mentioned above is based essen-
tially on using Chebyshev polynomials of a discrete
variable [14,15].

2. THE COVARIANT PARAMETERIZATION
OF ELECTROMAGNETIC CURRENT
FOR PARTICLE WITH ARBITRARY SPIN

The electrical and magnetic multipole momenta are
proportional to completely symmetrical traceless “mul-
tipole” tensors S;;, ; (1 <28):
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Q... and M, . in state with spin S projection on z axis.
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Tensors S;; ; may be unambiguously expressed
through spin operators S;
SiSk —SkS; =igg S, S;Si =S(S+1)I 3)

up to factor, that we fix by the next condition: the con-
struction S;;, i 4 9, ---qi, Tepresents i-power polyno-
mial of (S§) with the unit coefficient by (5(7)1, q is
arbitrary vector.
It is known [13], that
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where g; is unit vector, ¢y (x) are Chebyshev polynomi-
als.
Acting by the polynomial ¢, (55) on the wave func-

tion of a particle with spin S and its projection m on
direction a, for eigenvalue we obtain Chebyshev poly-
nomial @ (m) of discrete variable m:

01(Sa)u(S,m)= @ (m)v(S, m). (5)
Polynomials are different for different values of spin S,
i.e. by ¢;(m) we always mean ¢, (m, S).

Note, that Chebyshev polynomials ¢, (m) are not so
popular as famous Chebyshev polynomials 7, (x) and
U,(x). In view of it let’s consider some properties of
polynomials (pl(m).

A notation ¢;(m) was introduced by Chebyshev

[14], but in modern mathematical literature [15] instead
of them a little different polynomials are used:

t1(S+m)= 01 (m). (6)
For some purposes polynomials p;, (m) are more con-
venient,
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Recurrence expressions for Chebyshev polynomials are:

pi(S+m)=1;
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Orthogonality relations are:
S

Z pi(m)py(m)= oy
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The trace of two Chebyshev polynomials product is

Splpz (55 )Pl'(§5 )J: Sy by (671; )7 (®)
where
A= 4k 1)

is a Legendre polynomial. The relation with Klebsch-
Gordan coefficients is

pi(S,m)= (1)~ (SSm—-m| 10), ©)
where

(Jodimamy | jm)= (o jymomy | jojrjm) (10)
are Klebsch-Gordan coefficients, that defined so as, for
example, in [16].

First six Chebyshev polynomials have next explicit
form:
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Now we can write an expression for matrix elements
of electromagnetic current in the case when a particle is
described by Bargman-Wigner equations [13]:
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overhead index shows on which index of spin-tensor
ul(pl) (ulalaz---azs (pl)) or conjugate spin-tensor

(ualaz a5 (

u2(p) p2)) acts matrix o, . w(p)

and u> (p,) are normalized by condition:

(u(p)ulp))= u % (P, a, (p)=(2m)>.

Spin-tensor u(p) satisfies Bargman-Wigner equations:
(15)
0,(¢*) and M,(g*)in (11) are “physical” form factors,

(lp,u7,u +m)ai “alaz...ai...azs = O

that are electric and magnetic multipole moments of the
particle in the Breit system of reference [11,12].

3. VAVILOV-CHERENKOYV RADIATION
FOR PARTICLE WITH ARBITRARY SPIN
The calculated probability of the photon radiation by
particle with arbitrary spin per unit of length / and per
frequency unit @ is:
d*w 2
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where V; and E; are the initial particle velocity and en-
ergy, 0 is the angle of photon emission relative to direc-
tion of motion of the initial particle, n is the medium
refractive index,

(16)
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4. DISCUSSION

The theory developed by Frank [6] is the theory for
the Vavilov-Cherenkov radiation of arbitrary classical
multipoles. We investigated the Vavilov-Cherenkov
radiation of arbitrary quantum multipoles. The quantum
multipoles are the particles with arbitrary spin S and
with electrical and magnetic multipole momenta that are
described by some form factors. This paper is intrinsi-
cally connected with our papers [17,18], where the
probability of the one-photon emission by relativistic
electron was calculated in the framework of quantum
electrodynamics and the behavior of the radiation inten-
sities for large energy—momentum transfer was ana-
lyzed. It is known that “physical” form factors for elec-
tron are [11]

2 7.1
Qo(q2)=M1(qz)=€{1+q—2} 2.
4m



Putting these form factors in Eq. (16) gives the result
obtained and analyzed in [17].
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KBAHTOBAS TEOPUSI N3JIYYEHNS BABUJIOBA-YEPEHKOBA
YACTHUIEN C MPOU3BOJILHBIM CIIMHOM

I'.H. Agpanacves, M.B. /ltoouenko, FO.I1. Cmenanoeckuii

PaccmoTpeno uznyuenue BaBuinosa-UepeHkoBa 4acTULEl C IPOU3BOJIBHBIM CIIMHOM. BeposSTHOCTh M3myudeHus
OJTHOTO (POTOHA PENATUBHCTCKOM YacTHIIEH paccunTaHa B paMKax KBAHTOBOMW 3JIEKTPOJANHAMUKY C UCIIOIb30BAHHEM
KOBapHUaHTHOI MapaMeTpu3allii MaTPUUHBIX 3JIEMEHTOB 3JIEKTPOMArHUTHOTO TOKA YaCTHIIBI C TPOU3BOJIBHBIM CITHU-

HOM.

KBAHTOBA TEOPISI BUTIPOMIHIOBAHHS BABIVIOBA-YEPEHKOBA
YACTHUHKOIO 3 JOBUUIBHUM CIITHOM

I'.H. Aganacvee, M.B. /lioouenxo, 10.11. Cmenanoscokuii

PosrmsinyTe BUIIpoMiHIOBaHHS BaBinoBa-YepeHKOBa YaCTHHKOIO 3 JOBUIBHUM CITIHOM. IMOBIpHICTH BUIIPOMIHIO-
BaHHS OHOTO ()OTOHA PENIATUBICTCHKOIO YaCTHHKOIO 00YMCIIeHa B PaMKaX KBaHTOBOI EJICKTPOIMHAMIKU 3 BUKOPHC-
TaHHSIM KOBapiaHTHOI MapaMeTpu3allii MaTPUYHHAX EJIEMEHTIB eIeKTPOMAarHiTHOTO CTPyMY YaCTHHKH 3 JOBLIbHUM

CITIHOM.
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