
QUANTUM COMPUTATIONS: FUNDAMENTALS AND ALGORITHMS

S.A. Duplij1 and I.I. Shapoval2
1 V.N. Karazin National University, Kharkov, Ukraine,

e-mail: sduplij@gmail.com;
2National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine;

e-mail: ishapoval@kipt.kharkov.ua

Basic concepts of quantum information theory, principles of quantum calculations and the possibility of creation
on this basis unique on calculation power and functioning principle device, named quantum computer, are
concerned. The main blocks of quantum logic, schemes of quantum calculations implementation, as well as some
known today effective quantum algorithms, called to realize advantages of quantum calculations upon classical, are
presented here. Among them special place is taken by Shor’s algorithm of number factorization and Grover’s
algorithm of unsorted database search.

Phenomena of decoherence, its influence on quantum computer stability and methods of quantum errors
correction are described.

PACS: 03.67.Lx

In the 20 century quantum physics has realized

revolution in understanding the fundamental nature of
the World, and in 21 - can realize revolution in the
theory of computer calculations. By the 2020, taking
into account the modern rates of the basic computer
technologies miniaturization, we shall face that fact, that
the elementary blocks of medium devices and
processors of classical (Turing’s) computer have
reached the sizes comparable to atomic one, and cannot
be correctly described within the framework of the
classical theory of evaluations any more. Further
development of computer technologies is impossible
without change of means of classical evaluations theory
based on classical physics, with a quantum apparatus,
based on quantum mechanics.

Fundamental difference between characters of
quantum laws and classical ones demands, generally
speaking, revision of evaluations theory to realize
differences in principles of quantum computer
functioning, its advantages and disadvantages in
comparison with a conventional computer. And even
nowadays it is clear, that overcoming the
miniaturization of computer devices problem and
reequipping with quantum model of a data operation we
obtain something much more, than the possibility of
further compactification of computer’s hardware
components. We will get access to potentially huge
computing resource, existing exclusively due to
quantum mechanical properties of quantum systems
(superpositions of quantum states and their
entanglement) and to the quantum mechanisms,
allowing us to operate with the quantum information
[3].

Today it is known already several problems in
solving of which quantum computer could succeed
considerably in comparison with a classical computer.
First of all it is a problem of large number factorization
on prime factors. On conventional computers the best
known algorithms of factorization are accomplished

with steps,

where N - input number, and - length of an input
as the logarithm to the base, defined by scale of notation
[1]. Thus, such algorithms grow exponentially with a
size of input data N that is an insuperable barrier to
computer equipment of our day and rather long-term
future even for 250-unit number. However in 1994 the
algorithm for number factorization on a quantum
computer was designed which is accomplished with

 steps, where ε is some small number [2].
It is necessary to mark, that it poses a direct threat for
the majority of the modern cryptosystems (RSA,
EIGamal, DiffieHellman), based on a factorization.
Quantum computer will have not polynomial but
nevertheless considerable advantage, above classical in
a problem of searching in unsorted databases [4]. In
outcome the necessary element can be found only for

() () ()1 / 3 1 / 3 2 / 3exp 64 / 9 ln ln lnN N Ο

()2(log)N ε+Ο

log N

()NΟ

n
"101...10"

 calls to the database while classical searching
is carried out withΟ steps that show square-law
advantage of a quantum search engine.

()N

This is the enumeration of some problems, which
quantum computer promises to solve most impressively
by now. Below we shall consider main principles of
quantum computer operation, listed above algorithms,
problems of quantum computer realization and methods
of their overcoming in more detail.

A bit is the most fundamental entity of information. It
is the base of conventional computer. Regardless of its
physical representation, it is designed to have two
distinguishable states which should have a sufficiently
large energy barrier that no spontaneous transition, which
would evidently be detrimental, can occur between them.
It always carries two logical values as, e.g., either a “0” or
a “1”. It’s classical. So the register, which consists of n
bits, carries one of 2n definite states at any given time, e.g.

.

A quantum analogue of a bit (a quantum bit, or a
qubit) has, in its nature, quantum mechanical peculiarities
of its behaviour. Basically any at least two-state quantum

230 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 230-235.

system can serve as a qubit. Its state space is the linear
shell spanned on two basis vectors which are called the
0 and 1 quantum states. It is known as Hilbert one.

The most essential property of a quantum state when
trying to encode it is the possibility of coherence and
superposition of basis states. As is known, the general
state of a two-level structure quantum system is

,0 1α βΨ = + with 2 2 1α β+ = .
Consider a register composed of L qubits. It can store

up to 2L numbers simultaneously in a quantum
superposition. Therefore, if we add more qubits to the
register its capacity for storing information will increase
exponentially. Then the 250-qubit register which is so
small from macroscopic point of view will be capable of
holding more numbers than there are atoms in the known
Universe (If anything, this understates the amount of
quantum information that they hold, for in general, the
elements of a superposition are present in continuously
variable proportions, each with its own phase angle as
well.) Even so if we measure the register’s content, we
will see only one of those numbers. However, now we
can start doing some non-trivial quantum computation,
for once the register is prepared in a superposition of
many different numbers, we can perform mathematical
operations on all of them at once.

The contents of the L-qubit registers can be thought
of as a 2L-dimensional complex vector. An algorithm
for a quantum computer must initialize this vector in
some specified form (dependent on the design of the
quantum computer). In each step of the algorithm, that
vector is modified by multiplying it by a unitary matrix.
The matrix is determined by the physics of the device.
The unitary character of the matrix ensures the matrix is
invertible (so each step is reversible).

Upon termination of the algorithm, the 2L-
dimensional complex vector stored in the register must
be somehow read off from the qubit register by a
quantum measurement. However, by the laws of
quantum mechanics, that measurement will yield a
random L bit string (and it will destroy the stored state
as well). This random string can be used in computing
the value of a function because (by design) the
probability distribution of the measured output bit string
is skewed in favor of the correct value of the function.
By repeated runs of the quantum computer and
measurement of the output, the correct value can be
determined, to a high probability, by majority polling of
the outputs. In brief, quantum computations are
probabilistic.

A quantum algorithm is implemented by an
appropriate sequence of unitary operations. Note that
for a given algorithm, the operations will always be
done in exactly the same order. There is no "IF THEN"
statement to vary the order, since there is no way to read
the state of a qubit before the final measurement. There
are, however, conditional gate operations such as the
controlled NOT gate, or CNOT [5, 10].

A quantum algorithm is any physical process which
utilizes characteristically quantum effects to perform
useful computational tasks. It is convenient to formalize
the description of these quantum computational

processes n terms of a model which closely parallels the
formalism of classical computation. In essence, the
memory bits of the computer are qubits either than bits
and the elementary operations are unitary
transformations, each operating on a fixed finite number
of qubits, rather than the Boolean operations of classical
computation. It may be argued [6] that a model of this
type suffices to describe any general quantum physical
process. Any computer is required to operate by ‘finite
means’ i.e. it is equipped only with the possibility of
applying any operation of some finite fixed set of basic
unitary operations. Any other unitary operation that we
may need in an algorithm must be built (or rather
approximated to sufficient accuracy) out of these basic
building blocks by concatenating their action on
selected qubits. It may be shown [7] that various quite
small collections of unitary operations (so-called
‘universal sets’ of operations) suffice to approximate
any unitary operation on any number of qubits to
arbitrary accuracy.

One of the most useful and significant consequences
of this formalism is that it provides a way of assessing
the complexity of a computational task (again by
paralleling concepts from classical computational
complexity theory).

In the study of quantum algorithms it is of
paramount interest to find polynomial-time algorithms
for problems where no classical polynomial time
algorithm is known, i.e. we wish to demonstrate that
quantum effects may give rise to an exponential
speedup in running time over classical information
processing. We will describe the situation in which this
occurs on the Shor’s algorithm. We will also describe
the quantum searching algorithm which provides a
square root speedup over any classical algorithm, rather
than an exponential speedup.

Shor's algorithm is a quantum algorithm for
factoring a number N in O((log N)3) time and O(log N)
space, named after Peter Shor [2].

The algorithm is significant because it implies that
RSA, a popular public-key cryptography method, might
be easily broken, given a sufficiently large quantum
computer. Shor's algorithm can crack RSA in
polynomial time [8].

Like many quantum computer algorithms, Shor's
algorithm is probabilistic: it gives the correct answer
with high probability, and the probability of failure can
be decreased by repeating the algorithm. However,
since a proposed answer (in particular primality) is
polynomial time verifiable, the algorithm can be
modified to work in expected polynomial time with zero
error.

Shor's algorithm was discovered in 1994 by Peter
Shor, but the classical part was known before, it is
credited to G.L. Miller. Seven years later, in 2001, it
was demonstrated by a group at IBM, which factored 15
into 3 and 5, using a quantum computer with 7 qubits.

The problem we are trying to solve is that, given an
integer N, we try to find another integer p between 1
and N that divides N.

 231

Shor's algorithm consists of two parts:
1) A reduction of the factoring problem to the

problem of order-finding, which can be done on a
classical computer.

2) A quantum algorithm to solve the order-finding
problem.

The classical part is as follows:
1) Pick a random number a < N
2) Compute (gcd – greatest common

divisor). This may be done using the Euclidean
algorithm.

gcd (,)a N

3) If , then there is a nontrivial factor
of N, so we are done.

gcd(,) 1a N ≠

4) Otherwise, use the period-finding subroutine
(below) to find r, the period of the following function:

()() modxf x a N= ,
i.e. the smallest integer r for which . () ()f x r f x+ =

5) If r is odd, go back to step 1.

6) If , go back to step 1. / 2 1 (mod)ra ≡ − N

N7) The factors of N are . We are
done.

/ 2 1gcd (,)ra ±

Now consider the quantum part: period–finding
subroutine:

1) Start with a pair of input and output qubit
registers with qubits each, and initialize them to 2log N

1/ 2 0
x

N x− ∑ , where x runs from 0 to N-1.

2) Construct as a quantum function and apply
it to the above state, to obtain

()f x

1/ 2 2 /ixy N
QFT

y
U x N e π− −= ∑ y .

This leaves us in the following state:
1 2 / ()ixy N

x y
N e y fπ− −∑∑ x .

3) Perform a measurement. We obtain some
outcome y in the input register and in the output
register. Since f is periodic, the probability of measuring
some pair y and is given by

()0f x

0()f x

0

0

2 2
2 () /1 2 / 2

: () ()
.i x rb y Nixy N

x f x f x b
N e N e ππ − +− − −

=
=∑ ∑

Analysis now shows that this probability is higher,
the closer yr/N is to an integer.

4) Turn y/N into an irreducible fraction, and extract
the denominator r′, which is a candidate for r.

5) Check if . If so, we are done. () ()f x f x r′= +
6) Otherwise, obtain more candidates for r by using

values near y, or multiples of r′. If any candidate works,
we are done.

7) Otherwise, go back to step 1 of the subroutine.
The algorithm is composed of two parts. The first

part of the algorithm turns the factoring problem into
the problem of finding the period of a function, and may
be implemented classically. The second part finds the

period using the inverse quantum Fourier transform,
and is responsible for the quantum speedup.

So in the first stage the factors from period are
obtained. The integers less than N and coprime with N
form a finite group under multiplication modulo N,
which is typically denoted (Z/NZ)x. By the end of step 3,
we have an integer a in this group. Since the group is
finite, a must have a finite order r, the smallest positive
integer such that 1 modra N≡

Therefore, . Suppose we are able to
obtain r, and it is even. Then

 | (-1)rN a

/ 2 / 2

/ 2 / 2

1 (1)(1) 0 mod

| (1)(1).

r r r

r r

a a a

N a a

− = − + ≡

⇒ − +

N

1)

1

1))

r is the smallest positive integer such that , so N
cannot divide . If N also does not

divide (, then N must have a nontrivial common

factor with each of and . This
supplies us with a factorization of N. If N is the product
of two primes, this is the only possible factorization.

1ra ≡

/ 2(1+

/ 2(ra −

)
ra

/ 2ra +
/ 2(− ra

The second part is devoted to finding the period.
Shor's period-finding algorithm relies heavily on the
ability of a quantum computer to be in many states
simultaneously. To compute the period of a function f,
we evaluate the function at all points simultaneously.

Quantum physics does not allow us to access all this
information directly, though. A measurement will yield
only one of all possible values, destroying all others.
Therefore we have to carefully transform the
superposition to another state that will return the correct
answer with high probability. This is achieved by the
inverse quantum Fourier transform [9].

Shor thus had to solve three "implementation"
problems. All of them had to be implemented "fast",
which means that they can be implemented with a
number of quantum gates that is polynomial in logN.

1. Create a superposition of states. This can be done
by applying Hadamard gates [10] to all qubits in the
input register. Another approach would be to use the
quantum Fourier transform (see below).

2. Implement the function f as a quantum transform.
To achieve this, Shor used repeated squaring for his
modular exponentiation transformation. It is important
to note that this step is more difficult to implement than
the quantum Fourier transform, in that it requires
ancillary qubits and substantially more gates to
accomplish.

3. Perform an inverse quantum Fourier transform.
By using controlled rotation gates and Hadamard gates
Shor designed a circuit for the quantum Fourier
transform that uses just gates. ()()2log NΟ

After all these transformations a measurement will
yield an approximation to the period r. For simplicity
assume that there is a y such that yr/N is an integer.
Then the probability to measure y is 1. To see that we
notice that then e for all integers b.
Therefore the sum whose square gives us the
probability to measure y will be N/r since b takes

2 / 1ibyr Nπ− =

 232

roughly N/r values and thus the probability is 1/ .
There are ry such that yr/N is an integer and also r
possibilities for f(x

2r

0), so the probabilities sum to 1
[P.W. Shor, Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer, SIAM J. Sci. Statist. Comput. 26 (1997)
1484].

}

1Nλ −

ω ω= −

Now we will review in brief the Grover's algorithm
[4]. It is a quantum algorithm for searching an unsorted
database with N entries in (NΟ) time and using

 storage space (see big O notation). It was
invented by Lov Grover in 1996.

(log)NΟ

Classically, searching an unsorted database requires
a linear search, which is in time. Grover's

algorithm, which takes

()NΟ

()NΟ time, is the fastest

possible quantum algorithm for searching an unsorted
database. It provides "only" a quadratic speedup, unlike
other quantum algorithms, which may provide
exponential speedup over their classical counterparts.
However, even quadratic speedup is considerable when
N is large.

Like many quantum computer algorithms, Grover's
algorithm is probabilistic in the sense that it gives the
correct answer with high probability. The probability of
failure can be decreased by repeating the algorithm. (An
example of a deterministic quantum algorithm is the
Deutsch-Jozsa algorithm, which always produces the
correct answer with probability one.)

Below, we present the basic form of Grover's
algorithm, which searches for a single matching entry.

Consider an unsorted database with N entries. The
algorithm requires an N-dimensional state space H,
which can be supplied by log2N qubits.

Let us number the database entries by 0, 1, ... (N-1).
Choose an observable, Ω, acting on H, with N distinct
eigenvalues whose values are all known. Each of the
eigenstates of Ω encode one of the entries in the
database, in a manner that we will describe. Denote the
eigenstates (using bra-ket notation) as { 0 , 1 ,..., 1N−

and the corresponding eigenvalues by { } . 0 1, ,...,λ λ

We are provided with a unitary operator, Uω, which
acts as a subroutine that compares database entries
according to some search criterion. The algorithm does
not specify how this subroutine works, but it must be a
quantum subroutine that works with superpositions of
states. Furthermore, it must act specially on one of the
eigenstates, ω , which corresponds to the database
entry matching the search criterion. To be precise, we
require Uω to have the following effects: U

and
ω

U x xω = for all . Our goal is to identify

this eigenstate

x ω≠

ω , or equivalently the eigenvalue ω,
that Uω acts specially upon.

The steps of Grover’s algorithm are as follows [4]:

1. Initialize the system to the state 1
x

s
N

= ∑ x .

2. Perform the following "Grover iteration" r(N)

times. The function r(N) is described below.
a. Apply the operator Uω;
b. Apply the operator 2s s= −U s . I

3. Perform the measurement Ω. The measurement
result will be λω with probability approaching 1 for
N>>1. From λω, ω may be obtained.

Our initial state is 1
x

s
N

= ∑ x . Consider the plane

spanned by s and ω . Let xω be a ket in this plane

perpendicular to ω . Since ω is one of the basis

vectors, the overlap is 1s
N

ω = . In geometric

terms, there is an angle (π/2 - θ) between ω and s ,

where θ is given by 1
2 N
π

θ − =

cos and

1sin
N

θ = .

The operator Uω is a reflection at the hyperplane
orthogonal to ω ; for vectors in the plane spanned by

s and ω , it acts as a reflection at the line

through xω . The operator Us is a reflection at the line

through s . Therefore, the state vector remains in the

plane spanned by s and ω after each application of
Us and after each application of Uω, and it is
straightforward to check that the operator UsUω of each
Grover iteration step rotates the state vector by an angle
of 2θ toward ω .

We need to stop when the state vector passes close
to ω ; after this, subsequent iterations rotate the state

vector away from ω , reducing the probability of
obtaining the correct answer. The number of times to
iterate is given by r. In order to align the state vector
exactly with ω , we need:

12 , 2
2 4

r rπ π
θ θ

θ
 − = = −

.

However, r must be an integer, so generally we can

only set r to be the integer closest to 1 2
4

π
θ
 −

 . The

angle between ω and the final state vector is Ο ,
so the probability of obtaining the wrong answer is O(1
- cos

()θ

2θ) = O(sin2θ). For N>>1, θ ≈ N-1/2, so

4
Nr π

→ .

Furthermore, the probability of obtaining the wrong
answer becomes O(1/N), which goes to zero for large N.

There are a number of practical difficulties in
building a quantum computer, and thus far quantum
computers have only solved trivial problems. To
summarize the problem from the perspective of an
engineer, one needs to solve the challenge of building a
system which is isolated from everything except the

 233

measurement and manipulation mechanism.
Furthermore, one needs to be able to turn off the
coupling of the qubits to the measurement so as to not
decohere the qubits while performing operations on
them.

One major problem is keeping the components of
the computer in a coherent state, as the slightest
interaction with the external world would cause the
system to decohere. This effect causes the unitary
character (and more specifically, the invertibility) of
quantum computational steps to be violated.
Decoherence times for candidate systems, in particular
the transverse relaxation time T2 (terminology used in
NMR and MRI technology, also called the dephasing
time), typically range between nanoseconds and
seconds at low temperature [11]. The issue for optical
approaches are more difficult as these timescales are
orders of magnitude lower and an often cited approach
to overcome it uses optical pulse shaping approach.
Error rates are typically proportional to the ratio of
operating time to decoherence time, hence any
operation must be completed much quicker than the
decoherence time. If the error rate is small enough, it is
possible to use quantum error correction, which corrects
errors due to decoherence, thereby allowing the total
calculation time to be longer than the decoherence time.
An often cited (but rather arbitrary) figure for required
error rate in each gate is 10−4. This implies that each
gate must be able to perform its task 10,000 times faster
than the decoherence time of the system.

Meeting this scalability condition is possible for a
wide range of systems. However the use of error
correction brings with it the cost of a greatly increased
number of required qubits. The number required to
factor integers using Shor's algorithm is still
polynomial, and thought to be between L4 and L6, where
L is the number of bits in the number to be factored. For
a 1000 bit number, this implies a need for 1012 to 1018
qubits. Fabrication and control of this large number of
qubits is non-trivial for any of the proposed designs.

One approach to the stability-decoherence problem
is to create a topological quantum computer [12] with
anyons, quasi-particles used as threads and relying on
knot theory to form stable logic gates.

Quantum error correction [13] is for use in quantum
computing to protect quantum information from errors
due to decoherence and other quantum noise. Quantum
error correction is essential for fault-tolerant quantum
computation which is designed to deal not just with
noise on stored quantum information, but also with
faulty quantum gates, faulty quantum preparation, and
faulty measurements.

Classical error correction employs redundancy: The
simplest way is to store the information multiple times,
and — if these copies are later found to disagree — just
take a majority vote; e.g. If a bit has been copied three
times but now one bit says 0 but two bits say 1, then it
is probable that the original state was three 1s, and a
single error occurred, than that originally it was three 0s
and two errors occurred, though that could have
happened. Although copying is not possible with
quantum information, due to the no-cloning theorem

[14], the information of one qubit may be spread onto
several (physical) qubits by using a quantum error
correcting code. Such encoded quantum information is
protected, as in classical error correcting codes, against
errors of a limited form.

As in classical error correcting codes, a syndrome
measurement can determine whether a qubit has been
corrupted, and if so, which one. What is more, the
outcome of this operation (the syndrome) tells us not
only which physical qubit was affected, but also, in
which of several possible ways it was affected. The
latter is counter-intuitive at first sight: Since noise is
arbitrary, how can the effect of noise be one of only few
distinct possibilities? In most codes, the effect is either a
bit flip, or a sign (of the phase) flip, or both
(corresponding to the Pauli matrices X, Z, and Y). The
reason is that the measurement of the syndrome has the
projective effect of a quantum measurement. So even if
the error due to the noise was arbitrary, it can be
expressed as a superposition of basis operations—the
error basis (which is here given by the Pauli matrices
and the identity). The syndrome measurement "forces"
the qubit to "decide" for a certain specific "Pauli error"
to "have happened", and the syndrome tells us which, so
that we can let the same Pauli operator act again on the
corrupted qubit to revert the effect of the error.

The crucial point is that the syndrome measurement
tells us as much as possible about the error that has
happened, but nothing at all about the value that is
stored in the logical qubit — as otherwise the
measurement would destroy any quantum superposition
of this logical qubit with other qubits in the quantum
computer.

We have discussed some aspects and capabilities of
quantum computations. It is clear that it will be
incredibly difficult to realize quantum computer
technically. We could do that if we were sure that the
expected benefit will surpass our efforts. Listed above
applications are one of the most promising up-to-date
algorithms which can be realized on quantum
computers, but not only one. But it seems that the most
effective use of quantum machines will be in quantum
systems simulation which will find application in
chemistry, materials science, nanotechnology, biology
and medicine. So, we have to search new possible
applications and we have understanding of wide
interdisciplinary efforts necessity to realize quantum
computers as the fastest computational devices in the
world.

REFERENCES
1. A.M. Odiyzko. The future of integer factorization:

Preprint At&T Bell Laboratories. 1995, 16 p.
2. P. Shor. Polynomial-time algorithms for prime

factorization and discrete logs on a quantum
computer //SIAM J. Sci. Statist. Comput. 1997,
v. 26, 1484 p.

3. R. Feynman. Simulating physics with computers
//Int. J. Theoret. Phys. 1982, v. 21, p. 467-488.

4. L.K. Grover. A fast quantum mechanical algorithm
for database search //Proc. 28th Annual ACM

 234

Symposium on the Theory of Computing. 1996,
p. 212-219.

5. C. Monroe et. al. Demonstration of a Fundamental
Quantum Logic Gate //Physical Review Letters.
1995, v. 75, p. 4714-4717.

6. D. Deutsch. Quantum theory, the Church-Turing
principle, and the universal quantum computer
//Proc. R. Soc. London A., 1985, v. 400,
p. 97-117.

7. D. Deutsch, A. Barenco, A. Ekert. Universality in
quantum computation //Proc. Roy. Soc. London A
1995, v. 449, p. 669-677.

8. R. Rivest et al. On digital signatures and public-key
cryptosystems: Preprint MIT/LCS/TR-212,MIT
Laboratory for Computer Science, 1979.

9. M.A. Nielsen, I.L. Chuang. Quantum Computation
and Quantum Information. Cambridge: “Cambridge
University Press”, 2000, 665 p.

10. A. Barenco et al. Elementary gates for quantum
computation. //Phys.Rev. A. 1995, v. 52, p. 3457-
3488.

11. D.P. DiVincenzo. Quantum computation //Science.
1995, v. 270, N 5234, p. 255-261.

12. G.P. Collins. Computing with Quantum Knots
//Scientific American. April 2006, p. 57-63.

13. P.W. Shor. Scheme for reducing decoherence in
quantum computer memory //Phys. Rev. A. 1995,
v. 52, p. 2493–2496.

14. W.K. Wootters, W.H. Zurek. A Single Quantum
Cannot be Cloned //Nature. 1982, v. 299, p. 802-803.

КВАНТОВЫЕ ВЫЧИСЛЕНИЯ: ОСНОВЫ И АЛГОРИТМЫ

С.А. Дуплий, И.И. Шаповал

Рассмотрены основные концепции квантовой теории информации, принципы квантовых вычислений и
возможность создания на их основе уникального по вычислительной мощности и принципу
функционирования устройства – квантового компьютера. Представлены основные блоки квантовой логики,
схемы реализации квантовых вычислений, а также известные сегодня эффективные квантовые алгоритмы,
которые призваны воплотить преимущества квантовых вычислений над классическими. Среди них особое
место занимают алгоритм Шора – факторизации чисел и алгоритм Гровера – поиска в неупорядоченных
базах данных. Описано явление декогеренции, её влияние на стабильность квантового компьютера и методы
коррекции квантовых ошибок.

КВАНТОВІ ОБЧИСЛЕННЯ: ОСНОВИ ТА АЛГОРИТМИ

С.А. Дуплій, І.І. Шаповал

Розглянуто основні концепції квантової теорії інформації, принципи квантових обчислень та можливість
створення на їх основі унікального по обчислювальній потужності та принципу функціювання пристрою –
квантового комп’ютера. Представлені основні блоки квантової логіки, схеми впровадження квантових
обчислень, а також відомі сьогодні ефективні квантові алгоритми, що покликані втілити переваги квантових
обчислень над класичними. Серед них особливе місце займають алгоритм Шора – факторизації чисел та
алгоритм Гровера – пошуку в невпорядкованих базах даних. Описано явище декогеренції, її вплив на
стабільність квантового комп’ютера та методи корекції квантових помилок.

 235

