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Basic concepts of quantum information theory, principles of quantum calculations and the possibility of creation 
on this basis unique on calculation power and functioning principle device, named quantum computer, are 
concerned. The main blocks of quantum logic, schemes of quantum calculations implementation, as well as some 
known today effective quantum algorithms, called to realize advantages of quantum calculations upon classical, are 
presented here. Among them special place is taken by Shor’s algorithm of number factorization and Grover’s 
algorithm of unsorted database search.  

Phenomena of decoherence, its influence on quantum computer stability and methods of quantum errors 
correction are described. 

PACS: 03.67.Lx 
 
In the 20 century quantum physics has realized 

revolution in understanding the fundamental nature of 
the World, and in 21 - can realize revolution in the 
theory of computer calculations. By the 2020, taking 
into account the modern rates of the basic computer 
technologies miniaturization, we shall face that fact, that 
the elementary blocks of medium devices and 
processors of classical (Turing’s) computer have 
reached the sizes comparable to atomic one, and cannot 
be correctly described within the framework of the 
classical theory of evaluations any more. Further 
development of computer technologies is impossible 
without change of means of classical evaluations theory 
based on classical physics, with a quantum apparatus, 
based on quantum mechanics. 

Fundamental difference between characters of 
quantum laws and classical ones demands, generally 
speaking, revision of evaluations theory to realize 
differences in principles of quantum computer 
functioning, its advantages and disadvantages in 
comparison with a conventional computer. And even 
nowadays it is clear, that overcoming the 
miniaturization of computer devices problem and 
reequipping with quantum model of a data operation we 
obtain something much more, than the possibility of 
further compactification of computer’s hardware 
components. We will get access to potentially huge 
computing resource, existing exclusively due to 
quantum mechanical properties of quantum systems 
(superpositions of quantum states and their 
entanglement) and to the quantum mechanisms, 
allowing us to operate with the quantum information 
[3]. 

Today it is known already several problems in 
solving of which quantum computer could succeed 
considerably in comparison with a classical computer. 
First of all it is a problem of large number factorization 
on prime factors. On conventional computers the best 
known algorithms of factorization are accomplished 

with  steps, 

where N - input number, and  - length of an input 
as the logarithm to the base, defined by scale of notation 
[1]. Thus, such algorithms grow exponentially with a 
size of input data N that is an insuperable barrier to 
computer equipment of our day and rather long-term 
future even for 250-unit number. However in 1994 the 
algorithm for number factorization on a quantum 
computer was designed which is accomplished with 

 steps, where ε is some small number [2]. 
It is necessary to mark, that it poses a direct threat for 
the majority of the modern cryptosystems (RSA, 
EIGamal, DiffieHellman), based on a factorization. 
Quantum computer will have not polynomial but 
nevertheless considerable advantage, above classical in 
a problem of searching in unsorted databases [4]. In 
outcome the necessary element can be found only for 
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( )2( log )N ε+Ο

log N

( )NΟ

n
"101...10"

 calls to the database while classical searching 
is carried out withΟ  steps that show square-law 
advantage of a quantum search engine. 

( )N

This is the enumeration of some problems, which 
quantum computer promises to solve most impressively 
by now. Below we shall consider main principles of 
quantum computer operation, listed above algorithms, 
problems of quantum computer realization and methods 
of their overcoming in more detail. 

A bit is the most fundamental entity of information. It 
is the base of conventional computer. Regardless of its 
physical representation, it is designed to have two 
distinguishable states which should have a sufficiently 
large energy barrier that no spontaneous transition, which 
would evidently be detrimental, can occur between them. 
It always carries two logical values as, e.g., either a “0” or 
a “1”. It’s classical. So the register, which consists of n 
bits, carries one of 2n definite states at any given time, e.g. 

. 

A quantum analogue of a bit (a quantum bit, or a 
qubit) has, in its nature, quantum mechanical peculiarities 
of its behaviour. Basically any at least two-state quantum 
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system can serve as a qubit. Its state space is the linear 
shell spanned on two basis vectors which are called the 
0  and 1  quantum states. It is known as Hilbert one. 

The most essential property of a quantum state when 
trying to encode it is the possibility of coherence and 
superposition of basis states. As is known, the general 
state of a two-level structure quantum system is 

,0 1α βΨ = +  with 2 2 1α β+ = . 
Consider a register composed of L qubits. It can store 

up to 2L numbers simultaneously in a quantum 
superposition. Therefore, if we add more qubits to the 
register its capacity for storing information will increase 
exponentially. Then the 250-qubit register which is so 
small from macroscopic point of view will be capable of 
holding more numbers than there are atoms in the known 
Universe (If anything, this understates the amount of 
quantum information that they hold, for in general, the 
elements of a superposition are present in continuously 
variable proportions, each with its own phase angle as 
well.) Even so if we measure the register’s content, we 
will see only one of those numbers. However, now we 
can start doing some non-trivial quantum computation, 
for once the register is prepared in a superposition of 
many different numbers, we can perform mathematical 
operations on all of them at once. 

The contents of the L-qubit registers can be thought 
of as a 2L-dimensional complex vector. An algorithm 
for a quantum computer must initialize this vector in 
some specified form (dependent on the design of the 
quantum computer). In each step of the algorithm, that 
vector is modified by multiplying it by a unitary matrix. 
The matrix is determined by the physics of the device. 
The unitary character of the matrix ensures the matrix is 
invertible (so each step is reversible). 

Upon termination of the algorithm, the 2L-
dimensional complex vector stored in the register must 
be somehow read off from the qubit register by a 
quantum measurement. However, by the laws of 
quantum mechanics, that measurement will yield a 
random L bit string (and it will destroy the stored state 
as well). This random string can be used in computing 
the value of a function because (by design) the 
probability distribution of the measured output bit string 
is skewed in favor of the correct value of the function. 
By repeated runs of the quantum computer and 
measurement of the output, the correct value can be 
determined, to a high probability, by majority polling of 
the outputs. In brief, quantum computations are 
probabilistic. 

A quantum algorithm is implemented by an 
appropriate sequence of unitary operations. Note that 
for a given algorithm, the operations will always be 
done in exactly the same order. There is no "IF THEN" 
statement to vary the order, since there is no way to read 
the state of a qubit before the final measurement. There 
are, however, conditional gate operations such as the 
controlled NOT gate, or CNOT [5, 10]. 

A quantum algorithm is any physical process which 
utilizes characteristically quantum effects to perform 
useful computational tasks. It is convenient to formalize 
the description of these quantum computational 

processes n terms of a model which closely parallels the 
formalism of classical computation. In essence, the 
memory bits of the computer are qubits either than bits 
and the elementary operations are unitary 
transformations, each operating on a fixed finite number 
of qubits, rather than the Boolean operations of classical 
computation. It may be argued [6] that a model of this 
type suffices to describe any general quantum physical 
process. Any computer is required to operate by ‘finite 
means’ i.e. it is equipped only with the possibility of 
applying any operation of some finite fixed set of basic 
unitary operations. Any other unitary operation that we 
may need in an algorithm must be built (or rather 
approximated to sufficient accuracy) out of these basic 
building blocks by concatenating their action on 
selected qubits. It may be shown [7] that various quite 
small collections of unitary operations (so-called 
‘universal sets’ of operations) suffice to approximate 
any unitary operation on any number of qubits to 
arbitrary accuracy. 

One of the most useful and significant consequences 
of this formalism is that it provides a way of assessing 
the complexity of a computational task (again by 
paralleling concepts from classical computational 
complexity theory).  

In the study of quantum algorithms it is of 
paramount interest to find polynomial-time algorithms 
for problems where no classical polynomial time 
algorithm is known, i.e. we wish to demonstrate that 
quantum effects may give rise to an exponential 
speedup in running time over classical information 
processing. We will describe the situation in which this 
occurs on the Shor’s algorithm. We will also describe 
the quantum searching algorithm which provides a 
square root speedup over any classical algorithm, rather 
than an exponential speedup. 

Shor's algorithm is a quantum algorithm for 
factoring a number N in O((log N)3) time and O(log N) 
space, named after Peter Shor [2]. 

The algorithm is significant because it implies that 
RSA, a popular public-key cryptography method, might 
be easily broken, given a sufficiently large quantum 
computer. Shor's algorithm can crack RSA in 
polynomial time [8]. 

Like many quantum computer algorithms, Shor's 
algorithm is probabilistic: it gives the correct answer 
with high probability, and the probability of failure can 
be decreased by repeating the algorithm. However, 
since a proposed answer (in particular primality) is 
polynomial time verifiable, the algorithm can be 
modified to work in expected polynomial time with zero 
error. 

Shor's algorithm was discovered in 1994 by Peter 
Shor, but the classical part was known before, it is 
credited to G.L. Miller. Seven years later, in 2001, it 
was demonstrated by a group at IBM, which factored 15 
into 3 and 5, using a quantum computer with 7 qubits.  

The problem we are trying to solve is that, given an 
integer N, we try to find another integer p between 1 
and N that divides N. 
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Shor's algorithm consists of two parts: 
1) A reduction of the factoring problem to the 

problem of order-finding, which can be done on a 
classical computer.  

2) A quantum algorithm to solve the order-finding 
problem. 

The classical part is as follows: 
1) Pick a random number a < N  
2) Compute  (gcd – greatest common 

divisor). This may be done using the Euclidean 
algorithm.  

gcd ( , )a N

3) If , then there is a nontrivial factor 
of N, so we are done.  

gcd( , ) 1a N ≠

4) Otherwise, use the period-finding subroutine 
(below) to find r, the period of the following function:  

( )( ) modxf x a N= , 
i.e. the smallest integer r for which .  ( ) ( )f x r f x+ =

5) If r is odd, go back to step 1.  

6) If , go back to step 1.  / 2 1 (mod )ra ≡ − N

N7) The factors of N are . We are 
done. 

/ 2 1gcd ( , )ra ±

Now consider the quantum part: period–finding 
subroutine: 

1) Start with a pair of input and output qubit 
registers with qubits each, and initialize them to 2log N

1/ 2 0
x

N x− ∑ , where x runs from 0 to N-1. 

2) Construct  as a quantum function and apply 
it to the above state, to obtain 

( )f x

1/ 2 2 /ixy N
QFT

y
U x N e π− −= ∑ y . 

This leaves us in the following state: 
1 2 / ( )ixy N

x y
N e y fπ− −∑∑ x . 

3) Perform a measurement. We obtain some 
outcome y in the input register and  in the output 
register. Since f is periodic, the probability of measuring 
some pair y and  is given by 

( )0f x

0( )f x

0

0

2 2
2 ( ) /1 2 / 2

: ( ) ( )
.i x rb y Nixy N

x f x f x b
N e N e ππ − +− − −

=
=∑ ∑  

Analysis now shows that this probability is higher, 
the closer yr/N is to an integer. 

4) Turn y/N into an irreducible fraction, and extract 
the denominator r′, which is a candidate for r. 

5) Check if . If so, we are done. ( ) ( )f x f x r′= +
6) Otherwise, obtain more candidates for r by using 

values near y, or multiples of r′. If any candidate works, 
we are done. 

7) Otherwise, go back to step 1 of the subroutine. 
The algorithm is composed of two parts. The first 

part of the algorithm turns the factoring problem into 
the problem of finding the period of a function, and may 
be implemented classically. The second part finds the 

period using the inverse quantum Fourier transform, 
and is responsible for the quantum speedup. 

So in the first stage the factors from period are 
obtained. The integers less than N and coprime with N 
form a finite group under multiplication modulo N, 
which is typically denoted (Z/NZ)x. By the end of step 3, 
we have an integer a in this group. Since the group is 
finite, a must have a finite order r, the smallest positive 
integer such that  1 modra N≡

Therefore, . Suppose we are able to 
obtain r, and it is even. Then 

 |  ( -1)rN a

/ 2 / 2

/ 2 / 2

1 ( 1)( 1) 0 mod

| ( 1)( 1).

r r r

r r

a a a

N a a

− = − + ≡

⇒ − +

N
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1
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r is the smallest positive integer such that , so N 
cannot divide . If N also does not 

divide ( , then N must have a nontrivial common 

factor with each of and . This 
supplies us with a factorization of N. If N is the product 
of two primes, this is the only possible factorization. 

1ra ≡

/ 2( 1+

/ 2( ra −

)
ra

/ 2ra +
/ 2( − ra

The second part is devoted to finding the period. 
Shor's period-finding algorithm relies heavily on the 
ability of a quantum computer to be in many states 
simultaneously. To compute the period of a function f, 
we evaluate the function at all points simultaneously. 

Quantum physics does not allow us to access all this 
information directly, though. A measurement will yield 
only one of all possible values, destroying all others. 
Therefore we have to carefully transform the 
superposition to another state that will return the correct 
answer with high probability. This is achieved by the 
inverse quantum Fourier transform [9]. 

Shor thus had to solve three "implementation" 
problems. All of them had to be implemented "fast", 
which means that they can be implemented with a 
number of quantum gates that is polynomial in logN. 

1. Create a superposition of states. This can be done 
by applying Hadamard gates [10] to all qubits in the 
input register. Another approach would be to use the 
quantum Fourier transform (see below).  

2. Implement the function f as a quantum transform. 
To achieve this, Shor used repeated squaring for his 
modular exponentiation transformation. It is important 
to note that this step is more difficult to implement than 
the quantum Fourier transform, in that it requires 
ancillary qubits and substantially more gates to 
accomplish.  

3. Perform an inverse quantum Fourier transform. 
By using controlled rotation gates and Hadamard gates 
Shor designed a circuit for the quantum Fourier 
transform that uses just  gates.  ( )( )2log NΟ

After all these transformations a measurement will 
yield an approximation to the period r. For simplicity 
assume that there is a y such that yr/N is an integer. 
Then the probability to measure y is 1. To see that we 
notice that then e for all integers b. 
Therefore the sum whose square gives us the 
probability to measure y will be N/r since b takes 

2 / 1ibyr Nπ− =
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roughly N/r values and thus the probability is 1/ . 
There are ry such that yr/N is an integer and also r 
possibilities for f(x

2r

0), so the probabilities sum to 1 
[P.W. Shor, Polynomial-Time Algorithms for Prime 
Factorization and Discrete Logarithms on a Quantum 
Computer, SIAM J. Sci. Statist. Comput. 26 (1997) 
1484]. 

}

1Nλ −

ω ω= −

Now we will review in brief the Grover's algorithm 
[4]. It is a quantum algorithm for searching an unsorted 
database with N entries in ( NΟ )  time and using 

 storage space (see big O notation). It was 
invented by Lov Grover in 1996. 

(log )NΟ

Classically, searching an unsorted database requires 
a linear search, which is  in time. Grover's 

algorithm, which takes 

( )NΟ

( )NΟ  time, is the fastest 

possible quantum algorithm for searching an unsorted 
database. It provides "only" a quadratic speedup, unlike 
other quantum algorithms, which may provide 
exponential speedup over their classical counterparts. 
However, even quadratic speedup is considerable when 
N is large. 

Like many quantum computer algorithms, Grover's 
algorithm is probabilistic in the sense that it gives the 
correct answer with high probability. The probability of 
failure can be decreased by repeating the algorithm. (An 
example of a deterministic quantum algorithm is the 
Deutsch-Jozsa algorithm, which always produces the 
correct answer with probability one.) 

Below, we present the basic form of Grover's 
algorithm, which searches for a single matching entry. 

Consider an unsorted database with N entries. The 
algorithm requires an N-dimensional state space H, 
which can be supplied by log2N qubits. 

Let us number the database entries by 0, 1, ... (N-1). 
Choose an observable, Ω, acting on H, with N distinct 
eigenvalues whose values are all known. Each of the 
eigenstates of Ω encode one of the entries in the 
database, in a manner that we will describe. Denote the 
eigenstates (using bra-ket notation) as { 0 , 1 ,..., 1N−  

and the corresponding eigenvalues by { } . 0 1, ,...,λ λ

We are provided with a unitary operator, Uω, which 
acts as a subroutine that compares database entries 
according to some search criterion. The algorithm does 
not specify how this subroutine works, but it must be a 
quantum subroutine that works with superpositions of 
states. Furthermore, it must act specially on one of the 
eigenstates, ω , which corresponds to the database 
entry matching the search criterion. To be precise, we 
require Uω to have the following effects: U  

and 
ω

U x xω =  for all . Our goal is to identify 

this eigenstate 

x ω≠

ω , or equivalently the eigenvalue ω, 
that Uω acts specially upon. 

The steps of Grover’s algorithm are as follows [4]: 

1. Initialize the system to the state 1
x

s
N

= ∑ x . 

2. Perform the following "Grover iteration" r(N) 

times. The function r(N) is described below. 
a. Apply the operator Uω; 
b. Apply the operator 2s s= −U s . I

3. Perform the measurement Ω. The measurement 
result will be λω with probability approaching 1 for 
N>>1. From λω, ω may be obtained. 

Our initial state is 1
x

s
N

= ∑ x . Consider the plane 

spanned by s and ω . Let xω be a ket in this plane 

perpendicular to ω . Since ω  is one of the basis 

vectors, the overlap is 1s
N

ω = . In geometric 

terms, there is an angle (π/2 - θ) between ω  and s , 

where θ is given by 1
2 N
π

θ − = 
 

cos  and 

1sin
N

θ = . 

The operator Uω is a reflection at the hyperplane 
orthogonal to ω ; for vectors in the plane spanned by 

s and ω , it acts as a reflection at the line 

through xω . The operator Us is a reflection at the line 

through s . Therefore, the state vector remains in the 

plane spanned by s  and ω  after each application of 
Us and after each application of Uω, and it is 
straightforward to check that the operator UsUω of each 
Grover iteration step rotates the state vector by an angle 
of 2θ toward ω . 

We need to stop when the state vector passes close 
to ω ; after this, subsequent iterations rotate the state 

vector away from ω , reducing the probability of 
obtaining the correct answer. The number of times to 
iterate is given by r. In order to align the state vector 
exactly with ω , we need: 

12 , 2
2 4

r rπ π
θ θ

θ
 − = = − 
 

.  

However, r must be an integer, so generally we can 

only set r to be the integer closest to 1 2
4

π
θ
 −
 


 . The 

angle between ω  and the final state vector is Ο , 
so the probability of obtaining the wrong answer is O(1 
- cos

( )θ

2θ) = O(sin2θ). For N>>1, θ ≈ N-1/2, so 

4
Nr π

→ . 

Furthermore, the probability of obtaining the wrong 
answer becomes O(1/N), which goes to zero for large N. 

There are a number of practical difficulties in 
building a quantum computer, and thus far quantum 
computers have only solved trivial problems. To 
summarize the problem from the perspective of an 
engineer, one needs to solve the challenge of building a 
system which is isolated from everything except the 
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measurement and manipulation mechanism. 
Furthermore, one needs to be able to turn off the 
coupling of the qubits to the measurement so as to not 
decohere the qubits while performing operations on 
them. 

One major problem is keeping the components of 
the computer in a coherent state, as the slightest 
interaction with the external world would cause the 
system to decohere. This effect causes the unitary 
character (and more specifically, the invertibility) of 
quantum computational steps to be violated. 
Decoherence times for candidate systems, in particular 
the transverse relaxation time T2 (terminology used in 
NMR and MRI technology, also called the dephasing 
time), typically range between nanoseconds and 
seconds at low temperature [11]. The issue for optical 
approaches are more difficult as these timescales are 
orders of magnitude lower and an often cited approach 
to overcome it uses optical pulse shaping approach. 
Error rates are typically proportional to the ratio of 
operating time to decoherence time, hence any 
operation must be completed much quicker than the 
decoherence time. If the error rate is small enough, it is 
possible to use quantum error correction, which corrects 
errors due to decoherence, thereby allowing the total 
calculation time to be longer than the decoherence time. 
An often cited (but rather arbitrary) figure for required 
error rate in each gate is 10−4. This implies that each 
gate must be able to perform its task 10,000 times faster 
than the decoherence time of the system. 

Meeting this scalability condition is possible for a 
wide range of systems. However the use of error 
correction brings with it the cost of a greatly increased 
number of required qubits. The number required to 
factor integers using Shor's algorithm is still 
polynomial, and thought to be between L4 and L6, where 
L is the number of bits in the number to be factored. For 
a 1000 bit number, this implies a need for 1012 to 1018 
qubits. Fabrication and control of this large number of 
qubits is non-trivial for any of the proposed designs. 

One approach to the stability-decoherence problem 
is to create a topological quantum computer [12] with 
anyons, quasi-particles used as threads and relying on 
knot theory to form stable logic gates. 

Quantum error correction [13] is for use in quantum 
computing to protect quantum information from errors 
due to decoherence and other quantum noise. Quantum 
error correction is essential for fault-tolerant quantum 
computation which is designed to deal not just with 
noise on stored quantum information, but also with 
faulty quantum gates, faulty quantum preparation, and 
faulty measurements. 

Classical error correction employs redundancy: The 
simplest way is to store the information multiple times, 
and — if these copies are later found to disagree — just 
take a majority vote; e.g. If a bit has been copied three 
times but now one bit says 0 but two bits say 1, then it 
is probable that the original state was three 1s, and a 
single error occurred, than that originally it was three 0s 
and two errors occurred, though that could have 
happened. Although copying is not possible with 
quantum information, due to the no-cloning theorem 

[14], the information of one qubit may be spread onto 
several (physical) qubits by using a quantum error 
correcting code. Such encoded quantum information is 
protected, as in classical error correcting codes, against 
errors of a limited form. 

As in classical error correcting codes, a syndrome 
measurement can determine whether a qubit has been 
corrupted, and if so, which one. What is more, the 
outcome of this operation (the syndrome) tells us not 
only which physical qubit was affected, but also, in 
which of several possible ways it was affected. The 
latter is counter-intuitive at first sight: Since noise is 
arbitrary, how can the effect of noise be one of only few 
distinct possibilities? In most codes, the effect is either a 
bit flip, or a sign (of the phase) flip, or both 
(corresponding to the Pauli matrices X, Z, and Y). The 
reason is that the measurement of the syndrome has the 
projective effect of a quantum measurement. So even if 
the error due to the noise was arbitrary, it can be 
expressed as a superposition of basis operations—the 
error basis (which is here given by the Pauli matrices 
and the identity). The syndrome measurement "forces" 
the qubit to "decide" for a certain specific "Pauli error" 
to "have happened", and the syndrome tells us which, so 
that we can let the same Pauli operator act again on the 
corrupted qubit to revert the effect of the error. 

The crucial point is that the syndrome measurement 
tells us as much as possible about the error that has 
happened, but nothing at all about the value that is 
stored in the logical qubit — as otherwise the 
measurement would destroy any quantum superposition 
of this logical qubit with other qubits in the quantum 
computer. 

We have discussed some aspects and capabilities of 
quantum computations. It is clear that it will be 
incredibly difficult to realize quantum computer 
technically. We could do that if we were sure that the 
expected benefit will surpass our efforts. Listed above 
applications are one of the most promising up-to-date 
algorithms which can be realized on quantum 
computers, but not only one. But it seems that the most 
effective use of quantum machines will be in quantum 
systems simulation which will find application in 
chemistry, materials science, nanotechnology, biology 
and medicine. So, we have to search new possible 
applications and we have understanding of wide 
interdisciplinary efforts necessity to realize quantum 
computers as the fastest computational devices in the 
world. 
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КВАНТОВЫЕ ВЫЧИСЛЕНИЯ: ОСНОВЫ И АЛГОРИТМЫ 

С.А. Дуплий, И.И. Шаповал 

Рассмотрены основные концепции квантовой теории информации, принципы квантовых вычислений и 
возможность создания на их основе уникального по вычислительной мощности и принципу 
функционирования устройства – квантового компьютера. Представлены основные блоки квантовой логики, 
схемы реализации квантовых вычислений, а также известные сегодня эффективные квантовые алгоритмы, 
которые призваны воплотить преимущества квантовых вычислений над классическими. Среди них особое 
место занимают алгоритм Шора – факторизации чисел и алгоритм Гровера – поиска в неупорядоченных 
базах данных. Описано явление декогеренции, её влияние на стабильность квантового компьютера и методы 
коррекции квантовых ошибок. 

 
 

КВАНТОВІ ОБЧИСЛЕННЯ: ОСНОВИ ТА АЛГОРИТМИ 

С.А. Дуплій, І.І. Шаповал 

Розглянуто основні концепції квантової теорії інформації, принципи квантових обчислень та можливість 
створення на їх основі унікального по обчислювальній потужності та принципу функціювання пристрою – 
квантового комп’ютера. Представлені основні блоки квантової логіки, схеми впровадження квантових 
обчислень, а також відомі сьогодні ефективні квантові алгоритми, що покликані втілити переваги квантових 
обчислень над класичними. Серед них особливе місце займають алгоритм Шора – факторизації чисел та 
алгоритм Гровера – пошуку в невпорядкованих базах даних. Описано явище декогеренції, її вплив на 
стабільність квантового комп’ютера та методи корекції квантових помилок. 
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