FINITE SIZE INDUCED PHENOMENA
IN 2D CLASSICAL SPIN MODELS

O. Kapikranian', B. Berche’, and Yu. Holovatch’

Institute for Condensed Matter Physics, National Acad. Sci. of Ukraine, 79011, Lviv, Ukraine;
Laboratoire de Physique des Matériaux, Université Henri Poincaré,
1, Nancy, 54506, Vandeeuvre les Nancy Cedex, France,
e-mail: akap@icmp.lviv.ua;
’Laboratoire de Physique des Matériaux, Université Henri Poincare,
1, Nancy, 54506, Vandceuvre les Nancy, Cedex, France,
e-mail: berche@lpm.u-nancy.fr;
S Institute for Condensed Matter Physics, National Acad. Sci. of Ukraine, 79011, Lviv, Ukraine;

Institut fiir Theoretische Physik, Johannes Kepler Universitdt Linz, 4040, Linz, Austria,
e-mail: hol@icmp.lviv.ua

We make a short overview of the recent analytic and numerical studies of the classical two-dimensional XY and
Heisenberg models at low temperatures. Special attention is being paid to an influence of finite system size L on the
peculiarities of the low-temperature phase. In accordance with the Mermin-Wagner-Hohenberg theorem, spontane-
ous magnetisation does not appear in the above models at infinite L. However it emerges for the finite system sizes

and leads to new features of the low-temperature behaviour.

PACS: 05.50.+q, 75.10.Hk

Celebrated Mermin-Wagner-Hohenberg and Bogo-
lyubov’s 1/4° theorems forbid spontaneous symmetry
breaking in two-dimensional (2D) systems of continu-
ous symmetry [1]. Therefore, there is no spontaneous
magnetisation in the 2D XY and Heisenberg models for
temperatures 7 # (. This well-known fact does not con-
cern the above models on lattices of finite size L. In
applied research this can concern the case of thin ferro-
magnetic films (always finite in practice) [2] and some
other objects. On the other hand models of finite size
are highly important for analysing Monte Carlo simula-
tions which are restricted to finite lattices as well.

The presence of residual magnetisation in the finite
XY and Heisenberg models in 2D can be simply argued
by the obvious fact that in finite systems transition to
the ordered phase at 7=0 (when all spins of the XY and
Heisenberg models are pointed in the same direction)
cannot be discontinuous. But besides this trivial predic-
tion other interesting phenomena can occure like the
quasi-long-range ordering (QLRO) in the 2D XY model
[3]. A challenging question is whether QLRO is possi-
ble in the Heisenberg model in two dimensions or not.
Although it is commonly believed that it is not possible
due to the absence of stable topological defects, there
are still some contrary arguments [4].

Here we summarize resent analytic and Monte Carlo
results for the XY and Heisenberg models on finite two-
dimensional lattices. The analytic approach is based on
the spin-wave approximation (SWA) which is known to
give a good estimation of the exact characteristics of the
2D XY model at low temperatures [5]. Although the
reliability of the SWA for the two-dimensional Heisen-
berg model of infinite size is not proven we assume that
it holds for a finite lattice. We pay attention to the mag-
netisation as a function of lattice size and to the spin-
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spin correlation function as a function of distance be-
tween sites. In order to support the analytic treatment
we present results of Monte Carlo simulations of the XY
and Heisenberg models on two dimensional lattices of
different sizes that we have performed for different val-
ues of temperature. Moreover we show the results of
our Monte Carlo similations of the 2D XY model with
quenched structural dilution.

The generalized Hamiltonian for both the XY and
Heisenberg models can be written as

H=-J Y. 8:8, (1)

<r,r'>

where the summation is over the nearest neighbour
sites of a 2D square lattice of linear size L, J>0 is the
interaction constant, with S,S, =8,"S.* +S,7S,.”
for the XY model and for the Heisenberg model,
SrSp=8."8."+S8.7"S,”+8,%S,”. The
perature behaviour is deeply connected to the symmetry
of the models. In the 2D XY model rotations of spins
form an Abelian group that allows formation of stable
topological defects like spin vortices. In this sense it can
be called an Abelian model in contrast to non-Abelian
ones. The 2D Heisenberg model is non-Abelian and
therefore there are no stable topological defects and as a
consequence no QLRO in the infinite system.

The quantities we pay attention to in the present
work are the magnetisation M:

= L= g

low-tem-

and the spin-spin correlation function G,(R):

G2(R)=(S,Sr+r)- A3)
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Introducing angle variables %:S;x :cos19;,

S;y = sin&; , for the XY model we can write the scalar

product of spins as
Sr Sr' = COS(Lgr - lgrv) N (4)

while spin of the Heisenberg model has two degrees of

freedom, so we have two angles Sr(l) and Sr(z):
S ¥ =cos9.Vcos 9@, 5" =singVcos 9P,

SrZ:singr(z). Then a scalar product of two
Heisenberg spins reads:

SrSr =cos(3, M -9, Mycos(9,? - 9.2))

®)
+(1- cos(Sr(l) - Sr,(l) ))sin Sr(z) sin Sr.(z) .

Since our work concerns low temperature proper-
ties, we can assume all the spins of the XY and Heisen-
berg models being pointed approximately in the same
direction. This assumption means that all angles , and

Sr(l), Sr(z) stay small. Therefore the spin-wave ap-

proximation (SWA) can be applied, i. e. we can expand
the trigonometric functions in (4) and (5) keeping quad-
ratic terms only. Then the Hamiltonian of the 2D XY
model can be written as

HY = Hy+HXY (9), (6)
with
HY (@) =27 T(8,-97. ™)

The Hamiltonian of the Heisenberg model in the
SWA can be expressed through (7) as well:

H Heis — H, +HXY(19(1))+HXY(L9(2)) i (8)

It has been proved that the SWA gives a quite nice
estimation to the true low-temperature behaviour of the
2D XY model in the thermodynamic limit. Although the
behaviour of the infinite 2D Heisenberg model at low
temperatures is believed to be quite different, we can
assume that for finite lattices the SWA will give reliable
result for the low-temperature characteristics of the
model.

In the case of the 2D XY model, the asymptotic be-
haviour of the spin-spin correlation function is well
known [5]:

Gy (R) = (cos(s: ~ & =) e R ©)

with XY =kT/(2zJ). The finiteness of the lattice

causes a neglegible correction to the exponent nXY .
The magnetisation in the model on a finite lattice decays

with the linear size L according to a power law [6]:
MY L—n”/z’

(10)

with the same exponent XY that stands in (9).

For the 2D Heisenberg model, the separation of co-
ordinates Sr(l) and 9,(2) in (8) allows us to rewrite the

spin-spin correlation function through the correlation
function of the XY model:

6,1 () = |6, ()] (an
Then we have
Gy (Ryoc R (12)

with nffeis =2»XY 1t is important to stress here that
this result can be obtained analytically only if the tem-
perature is taken in the limit A7 — 0 but the lattice re-

mains finite. This is due to the fact that Sr(l) and

Sr(z) are not independent variables, but can be consid-

ered as independent only when the temperature ap-
proaches zero [7].

A similar outcome can be obtained for the magneti-
sation of the 2D XY model as a function of the linear

lattice size L :
MHeis o« Lan""“'/2, (13)

with the same 7€ that stands in the correlation func-
tion (12).

To check the above analytic results we have per-
formed Monte Carlo simulations of the Heisenberg spin
model on lattices of different sizes and at different tem-
peratures. The Wolff’s cluster algorithm was used for
this purpose [8]. The exponent 7 (Fig. 1) was obtained

on the base of three different observables, analysing the
finite size scaling of the magnetisation, M oc L771(1/2
the pair correlation function, G,(L/2) o L77(T)  and

the magnetic susceptibility, y oc L271(T).
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Fig. 1. Comparison between the exponents of the

Heis | obtained

two-dimensional Heisenberg model, n
from the Monte Carlo simulations and from the analytic

calculation in the SWA. The dashed line presents nXY

All three quantities were computed at different tem-
peratures for varying system sizes, giving access to a
temperature dependent exponent 77(7") . Power-law scal-

ing found for all three quantities M , G, and y supports
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the presence of a QLRO phase found by analytic con-
siderations.

Moreover we have performed Monte Carlo simula-
tions of 2D XY-spins on regular and diluted lattices [9]
using the same Wolff’s cluster algorithm. According to
Harris criterion [10], disorder is irrelevant at the BKT
(Berezinskii-Kosterlitz-Tholess) transition of the two-
dimensional XY model. As a consequence, the univer-
sality class is unchanged (77 = %) at the transition but

randomness has a strong influence at low temperature in
the critical phase of the model. To study this effect nu-
merically, we have to average the physical quantities
over many realizations of disorder. For each realization,
we discarded typically 10° sweeps for thermalization,
and the measurements were performed with typically
10° production sweeps. Disorder averages were then
performed using typically 10° samples. The boundary
conditions were chosen periodic.

The quantity we call magnetisation is the thermody-
namic average of the real instant magnetisation which
varies, for a given realization of disorder, from one MC
iteration to the next. There are reasons to investigate the
distribution of instant magnetisation, since it can give
some information about the inner nature of the model. A
convenient way to display this distribution is to draw a
ring function which can be defined in the following
way: it is obtained when one plots the successive values
of the magnetisation (for each Monte Carlo step) in the
plane (m,, m,) where m, and m, are the two components
of magnetisation (Fig. 2).

The shape of the ring functions shows clear non-
Gaussian character as the temperature increases which
lies in the fact that more points are situated in the inner
region of the rings. As it should be, the mean
magnetisation tends to =zero with increase of
temperature in both pure and diluted systems. The
“diluted” ring functions are always smaller, since we
consider magnetisation per site taking all sites into
account, even those which are vacant.

The finite size scaling of the magnetisation, Eq.(10),
can be deduced from the study of the ring functions for
different sizes of the lattice. Thus we obtain the Monte

Carlo result for the exponent XY zi; of the pair correla-

tion function of a diluted system. In this case it will de-
pend on concentration of dilution. Again we have nice
agreement between Monte Carlo and the perturbation
expansion for the spin-wave approximated Hamiltonian
which gives [11]:

2 gir =X (1/¢2 +073(1-¢)/ 3
-227(1-3¢+2c?)/c*

where c is the concentration of magnetic sites.

We have presented both analytic and Monte Carlo
approach to investigate finite two-dimensional spin
models of continuous symmetry. The region of applica-
bility of our analytic treatment is restricted to low tem-
peratures only, since we work in the SWA.

The results of the Monte Carlo simulations are
found in good agreement with the analytic results in a
wide range of low temperatures.
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Fig. 2. Ring functions for a system of size L=16 at
dilution ¢= 0.95 for temperatures (from top to bottom)
kT/J= 0.3, 0.7 and 1.1. The outer ring function (red on-
line) represents the pure system

We continue to work in this direction applying struc-
tural disorder to the Heisenberg model in two dimensions
and introducing also correlated impurities in both models.
The potential goal of this kind of research is to discover
the exact nature of interaction of non-magnetic impurities
with topological defects and as a consequence their influ-
ence on the QLRO phase characteristics. While some
steps in this direction in Monte Carlo simulations can be
found in literature, a reliable analytic approach to the
problem is not developed up to our knowledge.

This work was supported by the CNRS-NAS ex-
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IDOOEKTHI KOHEYHOI'O PASMEPA B IBYXMEPHBIX KJIACCHYECKHUX
CIIMHOBBIX MOJEJIAX

O. Kanukpansan, b. bepu, I0. I'onosau

[TpuBeneH kpaTkuii 0030p HEAABHUX aHAINTHIECKUX M YUCICHHBIX NCCIIEOBAHUN KIIacCHIeCKOW XY MOJENH U
mozenu ['eiizenbepra npu HU3KKX Temneparypax. CrenuanbHoe BHUMaHHUE yISICHO BIMSHUIO KOHEYHOTO pa3Mepa
cucTeMbl L Ha CBOWCTBAa HM3KOTeMIeparypHoil ¢a3bl. CoriacHo Teopeme Mepmuna-Barnepa-XoreHnoOepra cron-
TaHHas HAMarHMYEHHOCTh OTCYTCTBYET B 3THUX MOJEISIX Npu OeckoHeuHOM L. OTHaKo OHA MOSBIISIETCS B CUCTEMax
KOHEYHOT'O pa3Mepa M MPUBOANUT K HOBBIM Ye€pTaM HU3KOTEMIIEPATYPHOTO TIOBEICHNSI.

E®EKTU CKIHYEHOI'O PO3MIPY B IBOBUMIPHUX KJIJACUYHUX CIITHOBUX MOJAEJISIX
O. Kanikpanan, b. bepw, IO. I'onoeau

3po01eHO KOPOTKUH OTJISA HEAABHIX aHANITHIHUX 1 YHCIOBUX JOCHTIHKEeHB KtacnaHol XY Mopeni i moxeni ["aii-
3eHOepra mpu HU3BKUX Temreparypax. OcoOmuBy yBary MpHIiIEHO BIUIMBY CKIHYEHOTO pO3Mipy CHUCTeMH L Ha
BJIACTUBOCTI HM3bKOTeMImeparypHoi ¢asu. 3a Teopemoro MepmiHa-Barunepa-Xorenoepra CrioHTaHHa HaMarHide-
HICTh B ITUX MOJIENSAX BifACYTHS mpHu Oe3mexHomy L. [IpoTe BOHA 3’SBISETHCA B CHCTEMaxX CKIHUECHOTO PO3MIpY i
CIPUYHUHSE HOBI PUCH HU3BKOTEMITEPATYPHOI TTOBETIHKH.
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