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We review a graphical way of classifying hidden symmetry algebras and groups of D=11, 10 maximal super-
gravities in terms of Dynkin diagrams, the shapes of which are determined by the bosonic field content of super-
gravities supermultiplets. The approach we follow is tightly related to the West’s conjecture on a hidden symmetry
of M-theory, and we discuss benefits of the approach in compare to other ways of searching for hidden symmetries

of String Theory.
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1. INTRODUCTION

The subject under the focus of these notes is the hid-
den symmetry structure of M-theory. Its study is of con-
siderable interest, since the action of full M-theory with
non-perturbative degrees of freedom is still lacking. The
encountered situation is a remnant of 60" in physics of
strong interactions, when the study of hidden symme-
tries was very efficient in classifying various
resonances. It resulted in the QCD foundation in the
end, with the well-defined action on the ground of
SU(3) symmetry. Hence, unmasking the symmetry

structure of M-theory is extremely important in search-
ing for the dynamical underlying principle.

To introduce the reader into the field of study, we
review, in the following section, dualities of String The-
ory and its hidden symmetries. We recall then a way of
identifying the hidden symmetries in the supergravity
approximation, and demonstrate after that an effective
technique of recovering the results in terms of Dynkin
diagrams. Our conclusions are collected in the last sec-
tion. No attempt has been made of giving a careful set
of references, rather most of details of what is discussed
here in a sketched manner can be read off textbooks
[1-3] and review papers [4-6].

2. STRING THEORY DUALITIES
AND HIDDEN SYMMETRIES

We begin with two pictures that characterize the
past and the presence of Sting Theory. The first picture,
Fig. 1 below, indicates the state of affairs in the “old
String Theory” [1], which mainly deals with perturbat-
ive degrees of freedom of the theory.

N=1 SUGRA
D=11 Ik

E8xE8 SO(32)
A

IIA TIIB TypeI Het Het

D=10

Fig. 1. A map of the old-days Superstring Theory

When non-perturbative effects are taken into ac-
count, it drastically changes the picture to the following
map [2] which is a pictorial representation of five dif-
ferent types of Superstrings (which stay in the corners

of the star in Fig. 2) in frames of an eleven-dimensional
non-perturbative unifying theory, called M-theory.
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Fig. 2. M-theory map

Since M-theory lives in D=11, while we observe just
four-dimensional world, it is an apparent problem for
the M-theory setting (as well as for the “old String The-
ory”) to figure out a way of correspondence between
D=11 and D=4 physics. A bridge between high and low
dimensions is provided by compactification of addi-
tional coordinates, which form an internal (very small
and invisible for us and our experimental tools) space.
Though an internal space is hidden, its properties are
very important for connecting high- and low-energy
physics, and different internal spaces lead to different
four-dimensional effective theories.

Compactifying M-theory, one arrives at M(oduli
space)-theory, which depends on moduli, i.e. some pa-
rameters of an effective theory arising upon the compacti-
fication. The moduli, but rather transformations of the
moduli under (hidden) symmetry groups, form the moduli
space, different points of which (points A and B in Fig. 3)
correspond to different effective coupling regimes.

M(oduli space) - theory
D=11-n

Fig. 3. A low-dimensional effective theory after
compactifying on a n-dimensional internal manifold
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The effective coupling, say in the A-point, may be-
come weak, so one can study the effective theory per-
turbatively there. But A and B points of the Moduli
space are related to each other via Duality, and it makes
possible to predict the behavior of theory in the strong
coupling point B by studying the theory in the weak
coupling point A.

There are three types of Dualities which connect
points in the Moduli space. S-duality, the duality be-
tween strong and weak coupling regimes of the same or
different type theories, applies for analysis of non-
perturbative effects due to Dp-branes. Recall that Dp-
branes are massive BPS states of type I and type II su-
perstring theories with coupling constant g¢. They be-

come light states in the dual theory with coupling con-
stant 1/g,. It turns out that type IIB superstring theory

is invariant under S-duality. Together with the invari-
ance of type IIB theory under constant shifts of RR
fields it is realized in SL(2,Z) symmetry of type IIB
theory. On the type IIA side S-duality has a different
realization: A stack of n DO0-branes with masses
M ~n/g gets transformed into a smooth spectrum of

massless particles in the strong coupling constant limit
g — . Such a process may be interpreted as a decom-

pactification of type IIA D=10 string theory into a
D=11 theory in the strong coupling limit. Then, the
spectrum of type IIA n DO-branes naturally arises upon
the compactification of D=11 theory on the circle of
radius R ~g. Therefore, the strong coupling limit of

type IIA theory is a theory in D=11, referred to as M-
theory.

Target-space duality, or T-duality for short, arises
when a string is embedded into a target space of the
configuration Mp =Mp_, xT,, where T, is a n-

dimensional internal torus under which a string is
wrapped m times. The energy of a string wrapped on
T, is described by the following Hamiltonian

2
P
2.2
Hp ~ Y —+w, 5" (1)
n

Eq. (1) indicates the symmetry under exchanging the
KK momenta p, with winding modes w,, supple-

mented with exchanging the radii of the torus r, with

their inverse, i.e.

r, < 1 . 2)
r}’l

Winding modes are solitonic states, so T-duality is the
invariance of String Theory under exchanging the soli-
tonic and standard modes. But not at all, since the in-
variance under the radii exchanging allows one to treat
more carefully different singularities, which can not be
in principle resolved in frameworks of usual QFT.

The group structure of T-duality is easy to under-
stand. A flat metric on a n- dimensional torus has the
same number of degrees of freedom as the following
coset space

SL(n)

S0(n)

Pp Wy,

xR, 3)
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where we have selected the torus volume parameter R .
In String Theory we also have a two-form gauge field B, ,

whose contribution into degrees of freedom on the torus is

AR, dim[ A2R" ] = @ )
We finally get

SL(”) x R+ x A2R1’l ~ 0(71,)’!) (5)

SO(n) O(n)x0(n)’

that is the contribution of gauge fields leads to the enhance-
ment of the original global symmetry of the torus SL(n ) .

Lastly, there is U-duality, which unifies the dualities
mentioned in the above. To establish the U-duality
group, one should study both type ITA/IIB theories in
different coupling regimes and in Mp =Mp_, xT,
space-times. In type IIA picture we have SL(n,R) to
O(n,n ) enhancement due to T-duality, and SL(n,R) to
SL(n+1,R) enlargement through the M-theory inter-

pretation (S-duality). Together, these symmetries gener-
ate the larger U-duality group. A convenient way to
realize the group is to play with Dynkin diagrams of
algebras in the above [3]. SL(n,R) algebra corresponds

to A4,_; diagram with n—1 nodes (see Fig. 4)

Oo—CO0—(O0—0C—0O .. OO0
Fig. 4. A(n-1) Dynkin diagram
The enlargement to O(n,n) corresponds to D, Dynkin
diagram with »n nodes as in Fig. 5
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Fig. 5. D(n) Dynkin diagram

while the enlargement to SL(n+1,R) algebra gets 4,
diagram (with n nodes)

® O OO O0O . OO
Fig. 6. A(n) Dynkin diagram

An entanglement of two diagrams, Fig. 5 and Fig. 6, is
realized in E,_; diagram (with n+1 nodes, Fig. 7)

e od 000 oo

Fig. 7. E(n+1) Dynkin diagram
The latter group is the hidden symmetry global group of
String theory in Mp = Mp_, x T, target-space.

A symmetry group of String theory should also in-
corporate the symmetry groups of the low-energy effec-
tive actions, viz. supergravities. Since
Mp =Mp_, x T, target space configuration is viewed
as the toroidal reduction, (a subgroup of) E,.; should
appear in the toroidally reduced maximal supergravities.
An interpretation of £, for n <2 is subtle (as well as
for n>8, since Eg is the end of E, sequence of clas-
sical algebras), rather it is a unifying notation for global



symmetry groups of the moduli space in the reduced
theories. Taking into account the relation of D=11 N=1
supergravity to type IIA supergravity via the reduction
on a one-torus, the E, sequence of hidden symmetries

can be assigned to D=11 supergravity, and should be
incorporated into M-theory. The moduli space of the
reduced M-theory in the low-energy approximation is as
follows (Fig. 8)
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Fig. 8. M(oduli)-theory clock

An amazing fact one can read off Fig. 7, that then
the reduction goes over three-dimensional space-time
down to two, one and zero, the E, sequence of global
symmetry algebras still continues. When n>8, the
global symmetry algebras become Kac-Moody-type
infinite-dimensional algebras. The local algebras of
cosets E, /K, , n>8 also become infinite-dimensonal.

The end of the sequence is Ej;, and this point corre-

no»

sponds to M-theory finite in all directions. It is abso-
lutely unclear why E, “conspiracy” arises, unless it has

presented in the unreduced theory. Following this way,
we arrive at West’s conjecture on £Ej; as a hidden
symmetry of M-theory.

This conjecture has several non-trivial corollaries.
For instance, M-theory constructed in such a way con-
tains infinitely many massless fields. Some of them may
be auxiliary, so a problem is to relate the fields to the
perturbative string spectrum (after figuring out a mecha-
nism of mass generation). Next, the realization of Ej;

algebra requires not only the generators for gauge fields
and their duals, but a special generator, which
corresponds to the field dual to graviton, Hence, M-
theory based on FEj; is dual to gravitational theory.

Moreover, it has to be a theory of higher-spin interact-
ing fields, that rises a long-standing problem of the dy-
namical realization of such a theory.

Leaving apart many details of the conjecture, let us
just accept it and try to realize Fig. 8 within its frame-
work. As we have mentioned in the above, this picture
(but up to the point 10) comes from reduced supergravi-
ties, and the way it appears is as follows.

3. DYNAMICAL ORIGIN OF HIDDEN
SYMMETRIES

To establish the hidden symmetry group of dimen-
sionally reduced supergravities one should start with a
higher-dimensional supergravity action and recover the

following structure upon the reduction to d =(D—-n)
space-time dimensions [7, 8]

S=[d%x-gR
+I%d¢*d¢+%ie‘i'¢ dya *dig + - ©)

Here ¢ is a dilaton vector which includes the origi-

nal supergravity dilaton and those appeared in the re-
duction. Constant vectors o label axionic scalar fields
xa - The scalar part of the action is that of a G/H sigma

model if one can identify d as positive roots of the al-
gebra corresponding to G. The local group H is the
maximum compact subgroup of G. It is worth mention-
ing that to identify G to that of Fig. 8, the dualisation
has to be taken into account (see [7, 8]).

To make the identification of groups more clear and
visible, it is used a graphical representation of the group
algebras, the Dynkin diagrams. Any symmetry group
(more precisely, its algebra) is uniquely determined by
the Cartan matrix constructed out of simple roots
o; forming a basis of the root vectors. The Cartan ma-

trix is defined by

20,0 ;

i = -7 (7

0%
and it is in one-to-one correspondence to the appropri-
ate Dynkin diagram [3]. The machinery of calculating
the Cartan matrix for different supergravities is very
well established (see e.g. [9,10]), with results marked in
Fig. 8, up to the reduction on a ten-torus.

4. DYNKIN LEGO FOR M-THEORY

Let’s now turn to the following question: Does the
conjectured Ejso natural as a symmetry of M-theory?
And if so, could it be possible, without doing the reduc-
tion routine, to realize Fig. 8 in a graphical way?

We note to this end that dealing with Dynkin dia-
grams is in common the same as dealing with the repre-
sentation theory. From the point of view of the latter, to
study representations (reps.) of an infinite-dimensional
algebra it is convenient to choose its maximal regular
finite-dimensional subalgebra.

The horizontal line of E;; Dynkin diagram (cf.

Fig. 7 with 11 nodes) is 4, diagram (Fig. 9)

10 9 8 7 6 5 4 3 2 1

Fig. 9. Ay, diagram (gravity line)

and the diagram corresponds to the finite classical alge-
bra SU(11)~ SL(11). Non-negative numbers on the
diagram are reserved for simple roots coming from the
gravitational degrees of freedom. The finite-
dimensional algebra SL(11) is the maximal regular
subalgebra, called the gravity line. From the point of
view of the representation theory, we can decompose
the field content of our infinite-dimensional algebra into
reps. of the subalgebra SL(11). An advantage of such a
decomposition is that the resulting fields of the low-
level reps. can be recognized in terms of the fields one
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is familiar with. For instance, if we enumerate the nodes
of the gravity line like in Fig. 9, the additional node
needed to form E;; will be exactly connected to the

node ‘3’ that tells us this additional simple root is origi-
nated from a 3" rank gauge field A;. This field enters

D=11 supergravity multiplet.

Such an observation suggests a naive ‘mnemonic’
rule to construct a diagram which corresponds to hidden
symmetries of higher-dimensional supergravities: We
have to draw the ‘gravity line’ — ten nodes for D=11
supergravity, nine nodes for D=10 theory — and to look
at the gauge fields content of the supergravity multiplet.
As a next step, we shall connect an additional n’th rank
tensor field node to the n’th node of the gravity line and
look at the so obtained diagram.

For D=11, 10 maximal supergravities it results in
(Figs. 10-12)

o =

Fig. 12. Naive diagram of type IIB supergravity

As in Fig. 9, we have denoted the gravity line with
numbers from one to nine, while other nodes are deco-
rated with antisymmetric tensor fields of the rank from
one to four which enter the supergravity multiplet.

The last three diagrams are incorrect and there is a
very simple objection for them: They do not correspond
to the ‘very-extension’ (i.e. to the extension of the dia-
gram with three additional nodes) of ‘classical’ alge-
bras. For the type IIA naive diagram there are two ways
to relate it to the ‘very-extended’ diagrams: To omit the
A; node that leads to a Ejq -like diagram (Fig. 13)

o
H—.—H—.—.—g—.—(}
9 8 7 6 5 4 3 2 1 A,

Fig. 13. Ey, diagram of type IIA supergravity

or to delete the B, node together with the gravity line

ninth node that results in a £5 " -like diagram (Fig. 14)

Fig. 14. E7*" diagram of type 114 supergravity
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The E;;-type diagram Fig. 13 tells us that the hid-

den symmetry of type IIA supergravity is the same as
that of D=11 supergravity. The meaning of Fig. 14 will
become clear in a minute.

For type IIB supergravity we arrive at E5 " -like
diagram (Fig. 15) after deleting the B, and C, nodes
in Fig. 12

C.

.—.—.—HiH—.

9 8 7 6 5 4 3 2 1
Fig. 15. E7* diagram of type IIB supergravity

This diagram corresponds to the subsector of type IIB
supergravity that includes gravity and C, antisymmet-
ric tensor field. When the complete bosonic subsector of
the type 1IB supermultiplet is taken into account, it re-

sults in Fig. 16.
X,

B,

9 8 7 6 5 4 3 2 1

Fig. 16. E\ diagram of type IIB supergravity

%o here is the type IIB supergravity axion.
If we now compare two Ej; diagrams of type
ITA/IIB theories (Fig. 17)

;
Q—H—H—Hl—o—o [1B
9 8 7 6 5 4 3 2 Bz X0

Fig. 17. E,, diagrams of 1IA/B supergravities

we find what is usually called T-duality rules

i Al 1B

. IB A
xXo - izB

~8zm »

i BY ~ &m - (®)
The rest of T-duality rules can be read off comparing
Fig. 15 to Fig. 16.

We have found the hidden symmetries of unreduced
maximal supergravities. The space-time reduction goes
on with deleting the gravity line nodes, starting from the
ninth. Then, the following chain of algebras occurs in

the process
E]O —)Eg —)Eg —)E7 —)Eé—)
—)Ds—)A4—)A2XA1 - ...

which are precisely the global symmetry algebras one
encounters in Fig. 8 when comes anticlockwise from 10
to 3. As in the standard approach resulted in Fig. 8, the
interpretation of E, | for n <2 is subtle.



5. SUMMARY

The hidden symmetry groups of the toroidally re-
duced supergravities can be found via studying the re-
duced actions and involved calculations of the field
transformations. It is an art to find the correct transfor-
mations and to identify the group. The method of calcu-
lations of the axionic label vectors which correspond to
the simple roots of the hidden symmetry group is more
transparent, simple and elegant. However, it also re-
quires the reduction of supergravities action.

Dynkin diagrams, constructing out of a LEGO-like
system elements such as nodes and lines, give us a way
of identifying the hidden symmetries without reducing
the actions. We have demonstrated this procedure for
maximal higher-dimensional supergravities, though the
prescription works for other supergravities as well.

Surely, there are some open questions. For instance,
it is unclear, how the prescription does work in the case
of non-toroidal reduction, and it is in general correct to
talk about hidden symmetries of supergravities compac-
tified on Calabi-Yau spaces in situation when the con-
sistency of the compactification fails. Another interest-
ing question concerns the role of twisted Kac-Moody
algebras within M-theory. Recall that Kac-Moody-type
algebras we considered here were of the untwisted type.
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O E(11) BM-TEOPHM: 1. CKPBITBIE CHMMETPUU MAKCUMAJIBHBIX CYIIEPTPABUTAIIMI
N JIETO JUATPAMM JIBIHKNHA

A.JO. Hypmazambemos

[IpencraBnen 0630p rpadpuvIeckoro MeToAa KiIacCHPHUKanuy anredp M TPy CKPBITHIX cuMmmerpuit D=11, 10
MaKCHMAaJIbHBIX CyNeprpaBUTalMi B TEPMUHAX aAuarpamm JIplHKHHA, popMa KOTOPBIX OINpPEAEISIeTCsS COCTaBOM 00-
30HHBIX IIOJICH CYNEeprpaBUTAlMOHHOTO CyNepMyJbTuILieTa. [IpeiyaraeMelii OAXO0A TECHO CBS3aH C THMIIOTE30H
Becra 0 ckpbITOil cuMMeTpur M-TeopuH, 1 00CYKIA0TCS IPEUMYIIECTBA JAHHOTO ITOJX0/a MO CPAaBHEHHIO C IpY-
THMH CIIOCO0aMH HaX0XKAEHUS CKPBITHIX cuMMeTpuii Teopun CTpyH.

OB E(11) B M-TEOPIi: 1. IPUXOBAHI CUMETPIi MAKCUMAJIbHUX CYIIEPT PABITALIIIA
TA JIETO JIATPAM JUHKIHA

O.10. Hypmazamobemos

IMomano ormsim rpadiunoro MeToxy Kiacudikarii anmreOp i rpym mpuxoBaHux cumerpin D=11, 10 makcumanb-
HUX CyIeprpaBiTaliii B TepMiHax miarpam JuHKiHa, popMa SIKUX BH3HAYAETHCS CKIaI0M O030HUX IIONIB Cyneprpa-
BITallIfHOTO CyNepMyJIbTHILIETY. 3alpOIIOHOBAHHMM MIAXiJ TICHO IMOB'A3aHUK 3 TinoTe30t0 Becrta mpo mpuxoBaHy
cumetpiro M-teopii, i 00rOBOPIOIOTHCS MEPEBAry JAHOTO IiIXOAY B MOPIBHSHHI 3 IHITUMH CITIOCOOAMHU 3HAXOKCH-
HS IpUXOBaHKUX cuMeTpiit Teopii CTpyH.
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