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We review a graphical way of classifying hidden symmetry algebras and groups of D=11, 10 maximal super-

gravities in terms of Dynkin diagrams, the shapes of which are determined by the bosonic field content of super-
gravities supermultiplets. The approach we follow is tightly related to the West’s conjecture on a hidden symmetry 
of M-theory, and we discuss benefits of the approach in compare to other ways of searching for hidden symmetries 
of String Theory.  
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1. INTRODUCTION  
The subject under the focus of these notes is the hid-

den symmetry structure of M-theory. Its study is of con-
siderable interest, since the action of full M-theory with 
non-perturbative degrees of freedom is still lacking. The 
encountered situation is a remnant of 60th in physics of 
strong interactions, when the study of hidden symme-
tries was very efficient in classifying various 
resonances. It resulted in the QCD foundation in the 
end, with the well-defined action on the ground of 

 symmetry. Hence, unmasking the symmetry 
structure of M-theory is extremely important in search-
ing for the dynamical underlying principle. 

SU(3)

To introduce the reader into the field of study, we 
review, in the following section, dualities of String The-
ory and its hidden symmetries. We recall then a way of 
identifying the hidden symmetries in the supergravity 
approximation, and demonstrate after that an effective 
technique of recovering the results in terms of Dynkin 
diagrams. Our conclusions are collected in the last sec-
tion. No attempt has been made of giving a careful set 
of references, rather most of details of what is discussed 
here in a sketched manner can be read off textbooks 
[1-3] and review papers [4-6].  

2. STRING THEORY DUALITIES  
AND HIDDEN SYMMETRIES 

We begin with two pictures that characterize the 
past and the presence of Sting Theory. The first picture, 
Fig. 1 below, indicates the state of affairs in the “old 
String Theory” [1], which mainly deals with perturbat-
ive degrees of freedom of the theory. 
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Fig. 1. A map of the old-days Superstring Theory 

When non-perturbative effects are taken into ac-
count, it drastically changes the picture to the following 
map [2] which is a pictorial representation of five dif-
ferent types of Superstrings (which stay in the corners 

of the star in Fig. 2) in frames of an eleven-dimensional 
non-perturbative unifying theory, called M-theory. 
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Fig. 2. M-theory map 

Since M-theory lives in D=11, while we observe just 
four-dimensional world, it is an apparent problem for 
the M-theory setting (as well as for the “old String The-
ory”) to figure out a way of correspondence between 
D=11 and D=4 physics. A bridge between high and low 
dimensions is provided by compactification of addi-
tional coordinates, which form an internal (very small 
and invisible for us and our experimental tools) space. 
Though an internal space is hidden, its properties are 
very important for connecting high- and low-energy 
physics, and different internal spaces lead to different 
four-dimensional effective theories. 

Compactifying M-theory, one arrives at M(oduli 
space)-theory, which depends on moduli, i.e. some pa-
rameters of an effective theory arising upon the compacti-
fication. The moduli, but rather transformations of the 
moduli under (hidden) symmetry groups, form the moduli 
space, different points of which (points A and B in Fig. 3) 
correspond to different effective coupling regimes. 
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Fig. 3. A low-dimensional effective theory after 

compactifying on a n-dimensional internal manifold 
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The effective coupling, say in the A-point, may be-
come weak, so one can study the effective theory per-
turbatively there. But A and B points of the Moduli 
space are related to each other via Duality, and it makes 
possible to predict the behavior of theory in the strong 
coupling point B by studying the theory in the weak 
coupling point A.  

There are three types of Dualities which connect 
points in the Moduli space. S-duality, the duality be-
tween strong and weak coupling regimes of the same or 
different type theories, applies for analysis of non-
perturbative effects due to Dp-branes. Recall that Dp-
branes are massive BPS states of type I and type II su-
perstring theories with coupling constant . They be-
come light states in the dual theory with coupling con-
stant 1 . It turns out that type IIB superstring theory 
is invariant under S-duality. Together with the invari-
ance of type IIB theory under constant shifts of RR 
fields it is realized in SL(2,Z) symmetry of type IIB 
theory. On the type IIA side S-duality has a different 
realization: A stack of  D0-branes with masses 

 gets transformed into a smooth spectrum of 
massless particles in the strong coupling constant limit 

. Such a process may be interpreted as a decom-
pactification of type IIA D=10 string theory into a 
D=11 theory in the strong coupling limit. Then, the 
spectrum of type IIA  D0-branes naturally arises upon 
the compactification of D=11 theory on the circle of 
radius . Therefore, the strong coupling limit of 
type IIA theory is a theory in D=11, referred to as M-
theory. 
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Target-space duality, or T-duality for short, arises 
when a string is embedded into a target space of the 
configuration , where  is a n - 

dimensional internal torus under which a string is 
wrapped  times. The energy of a string wrapped on 

 is described by the following Hamiltonian 

D D nM M T−= × n nT

m
nT

2
2 2

2 +∑n

n
T

n n

p
H ~ w r

r
n n .  (1) 

Eq. (1) indicates the symmetry under exchanging the 
KK momenta  with winding modes , supple-
mented with exchanging the radii of the torus  with 
their inverse, i.e. 

np nw

nr

1
↔ ↔n n n

n
p w , r

r
.  (2) 

Winding modes are solitonic states, so T-duality is the 
invariance of String Theory under exchanging the soli-
tonic and standard modes. But not at all, since the in-
variance under the radii exchanging allows one to treat 
more carefully different singularities, which can not be 
in principle resolved in frameworks of usual QFT.  

The group structure of T-duality is easy to under-
stand. A flat metric on a - dimensional torus has the 
same number of degrees of freedom as the following 
coset space 

n

+×
SL( n ) R
SO( n )

,  (3) 

where we have selected the torus volume parameter . 
In String Theory we also have a two-form gauge field , 
whose contribution into degrees of freedom on the torus is 

+R
2B

2 2 1
2
−

Λ Λ =n n n( n )R , dim[ R ] .   (4) 

We finally get 
2+× × Λ

×
�nSL( n ) O( n,n )R R

SO( n ) O( n ) O( n )
,   (5) 

that is the contribution of gauge fields leads to the enhance-
ment of the original global symmetry of the torus . SL( n )

Lastly, there is U-duality, which unifies the dualities 
mentioned in the above. To establish the U-duality 
group, one should study both type IIA/IIB theories in 
different coupling regimes and in  

space-times. In type IIA picture we have  to 
enhancement due to T-duality, and  to 

 enlargement through the M-theory inter-
pretation (S-duality). Together, these symmetries gener-
ate the larger U-duality group. A convenient way to 
realize the group is to play with Dynkin diagrams of 
algebras in the above [3].  algebra corresponds 
to  diagram with n  nodes (see Fig. 4) 
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...  
Fig. 4. A(n-1) Dynkin diagram 

The enlargement to O(  corresponds to  Dynkin 
diagram with  nodes as in Fig. 5 

n,n ) nD
n

 

...  
Fig. 5. D(n) Dynkin diagram 

while the enlargement to  algebra gets  
diagram (with  nodes) 

1+SL( n ,R ) nA
n

 

...  
Fig. 6. A(n) Dynkin diagram 

An entanglement of two diagrams, Fig. 5 and Fig. 6, is 
realized in  diagram (with  nodes, Fig. 7) 1+nE 1n +
 

...  
Fig. 7. E(n+1) Dynkin diagram 

The latter group is the hidden symmetry global group of 
String theory in  target-space. D D nM M T−= × n

n

A symmetry group of String theory should also in-
corporate the symmetry groups of the low-energy effec-
tive actions, viz. supergravities. Since 

 target space configuration is viewed 

as the toroidal reduction, (a subgroup of)  should 
appear in the toroidally reduced maximal supergravities. 
An interpretation of  for n  is subtle (as well as 
for , since  is the end of  sequence of clas-
sical algebras), rather it is a unifying notation for global 

D D nM M T−= ×

8>n 8E

1+nE

1+nE 2<
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symmetry groups of the moduli space in the reduced 
theories. Taking into account the relation of D=11 N=1 
supergravity to type IIA supergravity via the reduction 
on a one-torus, the  sequence of hidden symmetries 
can be assigned to D=11 supergravity, and should be 
incorporated into M-theory. The moduli space of the 
reduced M-theory in the low-energy approximation is as 
follows (Fig. 8) 
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Fig. 8. M(oduli)-theory clock 

An amazing fact one can read off Fig. 7, that then 
the reduction goes over three-dimensional space-time 
down to two, one and zero, the  sequence of global 
symmetry algebras still continues. When n , the 
global symmetry algebras become Kac-Moody-type 
infinite-dimensional algebras. The local algebras of 
cosets  , >8 also become infinite-dimensonal. 
The end of the sequence is , and this point corre-
sponds to M-theory finite in all directions. It is abso-
lutely unclear why  “conspiracy” arises, unless it has 
presented in the unreduced theory. Following this way, 
we arrive at West’s conjecture on  as a hidden 
symmetry of M-theory.  

nE
8>

n nE / K n

11E

11E

This conjecture has several non-trivial corollaries. 
For instance, M-theory constructed in such a way con-
tains infinitely many massless fields. Some of them may 
be auxiliary, so a problem is to relate the fields to the 
perturbative string spectrum (after figuring out a mecha-
nism of mass generation). Next, the realization of  
algebra requires not only the generators for gauge fields 
and their duals, but a special generator, which 
corresponds to the field dual to graviton, Hence, M-
theory based on  is dual to gravitational theory. 
Moreover, it has to be a theory of higher-spin interact-
ing fields, that rises a long-standing problem of the dy-
namical realization of such a theory. 

11E

Leaving apart many details of the conjecture, let us 
just accept it and try to realize Fig. 8 within its frame-
work. As we have mentioned in the above, this picture 
(but up to the point 10) comes from reduced supergravi-
ties, and the way it appears is as follows. 

3. DYNAMICAL ORIGIN OF HIDDEN 
SYMMETRIES 

To establish the hidden symmetry group of dimen-
sionally reduced supergravities one should start with a 
higher-dimensional supergravity action and recover the 

following structure upon the reduction to  
space-time dimensions [7, 8] 

= −d ( D n )

dS d x g= −∫ R  

1 1
2 2

G Gi G GG G α φ
α αdφ dφ e dχ dχ ...+ ∗ + ∗ +∑∫

G
 (6) 

Here  is a dilaton vector which includes the origi-
nal supergravity dilaton and those appeared in the re-
duction. Constant vectors α  label axionic scalar fields 

. The scalar part of the action is that of a G/H sigma 
model if one can identify  as positive roots of the al-
gebra corresponding to G. The local group H is the 
maximum compact subgroup of G. It is worth mention-
ing that to identify G to that of Fig. 8, the dualisation 
has to be taken into account (see [7, 8]). 

φ

G

Gα

Gαχ

To make the identification of groups more clear and 
visible, it is used a graphical representation of the group 
algebras, the Dynkin diagrams. Any symmetry group 
(more precisely, its algebra) is uniquely determined by 
the Cartan matrix constructed out of simple roots 

forming a basis of the root vectors. The Cartan ma-
trix is defined by 

iα

2 i j
ij

i i

α α
A

α α
=   (7) 

and it is in one-to-one correspondence to the appropri-
ate Dynkin diagram [3]. The machinery of calculating 
the Cartan matrix for different supergravities is very 
well established (see e.g. [9,10]), with results marked in 
Fig. 8, up to the reduction on a ten-torus.  

4. DYNKIN LEGO FOR M-THEORY  
Let’s now turn to the following question: Does the 

conjectured so natural as a symmetry of M-theory? 
And if so, could it be possible, without doing the reduc-
tion routine, to realize Fig. 8 in a graphical way? 

11E

We note to this end that dealing with Dynkin dia-
grams is in common the same as dealing with the repre-
sentation theory. From the point of view of the latter, to 
study representations (reps.) of an infinite-dimensional 
algebra it is convenient to choose its maximal regular 
finite-dimensional subalgebra. 

The horizontal line of  Dynkin diagram (cf. 
Fig. 7 with 11 nodes) is  diagram (Fig. 9) 

11E

10A
 

12345678910  
Fig. 9.  diagram (gravity line) 10A

and the diagram corresponds to the finite classical alge-
bra . Non-negative numbers on the 
diagram are reserved for simple roots coming from the 
gravitational degrees of freedom. The finite-
dimensional algebra  is the maximal regular 
subalgebra, called the gravity line. From the point of 
view of the representation theory, we can decompose 
the field content of our infinite-dimensional algebra into 
reps. of the subalgebra . An advantage of such a 
decomposition is that the resulting fields of the low-
level reps. can be recognized in terms of the fields one 

11 11SU( ) ~ SL( )

11SL( )

11SL( )
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is familiar with. For instance, if we enumerate the nodes 
of the gravity line like in Fig. 9, the additional node 
needed to form  will be exactly connected to the 
node ‘3’ that tells us this additional simple root is origi-
nated from a 3

11E

rd rank gauge field . This field enters 
D=11 supergravity multiplet. 

3A

48

367

A 3

3

4

Such an observation suggests a naïve ‘mnemonic’ 
rule to construct a diagram which corresponds to hidden 
symmetries of higher-dimensional supergravities: We 
have to draw the ‘gravity line’ – ten nodes for D=11 
supergravity, nine nodes for D=10 theory – and to look 
at the gauge fields content of the supergravity multiplet. 
As a next step, we shall connect an additional n’th rank 
tensor field node to the n’th node of the gravity line and 
look at the so obtained diagram.  

For D=11, 10 maximal supergravities it results in 
(Figs. 10-12) 

123567910

A 3

 
Fig. 10. Naive diagram of D=11 supergravity 

124589

B A
2 1 

Fig. 11. Naive diagram of type IIA supergravity 

 
12456789

B
2

C
C2

Fig. 12. Naive diagram of type IIB supergravity 

As in Fig. 9, we have denoted the gravity line with 
numbers from one to nine, while other nodes are deco-
rated with antisymmetric tensor fields of the rank from 
one to four which enter the supergravity multiplet. 

The last three diagrams are incorrect and there is a 
very simple objection for them: They do not correspond 
to the ‘very-extension’ (i.e. to the extension of the dia-
gram with three additional nodes) of ‘classical’ alge-
bras. For the type IIA naïve diagram there are two ways 
to relate it to the ‘very-extended’ diagrams: To omit the 

 node that leads to a -like diagram (Fig. 13) 3A 11E

123456789

B

A

2

1 
Fig. 13.   diagram of type IIA supergravity 11E

or to delete the  node together with the gravity line 

ninth node that results in a -like diagram (Fig. 14) 
2B

7E+++

12345678 A 1

A 3

    

Fig. 14.  diagram of type IIA supergravity 7E+++

The -type diagram Fig. 13 tells us that the hid-
den symmetry of type IIA supergravity is the same as 
that of D=11 supergravity. The meaning of Fig. 14 will 
become clear in a minute.  

11E

For type IIB supergravity we arrive at -like 
diagram (Fig. 15) after deleting the  and C  nodes 
in Fig. 12  

7E+++

22B

123456789

C4

 

Fig. 15. diagram of type IIB supergravity 7E+++

This diagram corresponds to the subsector of type IIB 
supergravity that includes gravity and C  antisymmet-
ric tensor field. When the complete bosonic subsector of 
the type IIB supermultiplet is taken into account, it re-
sults in Fig. 16. 

4

123456789

B 2

0

 
Fig. 16.  diagram of type IIB supergravity 11E

0χ  here is the type IIB supergravity axion. 
If we now compare two  diagrams of type 

IIA/IIB theories (Fig. 17) 
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Fig. 17.   diagrams of  IIA/B supergravities 11E

we find what is usually called T-duality rules 

1 0 2
IIA IIB IIB IIA

z Zi A ~ , i B ~ g ,χ zm

m

..

 

2
IIA IIB

z Zi B ~ g .   (8) 

The rest of T-duality rules can be read off comparing 
Fig. 15 to Fig. 16. 

We have found the hidden symmetries of unreduced 
maximal supergravities. The space-time reduction goes 
on with deleting the gravity line nodes, starting from the 
ninth. Then, the following chain of algebras occurs in 
the process 

10 9 8 7 6→ → → → →E E E E E  

5 4 2 1→ → → × →D A A A .  

which are precisely the global symmetry algebras one 
encounters in Fig. 8 when comes anticlockwise from 10 
to 3. As in the standard approach resulted in Fig. 8, the 
interpretation of   for  is subtle. 1+nE 2<n
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5. SUMMARY 
The hidden symmetry groups of the toroidally re-

duced supergravities can be found via studying the re-
duced actions and involved calculations of the field 
transformations. It is an art to find the correct transfor-
mations and to identify the group. The method of calcu-
lations of the axionic label vectors which correspond to 
the simple roots of the hidden symmetry group is more 
transparent, simple and elegant. However, it also re-
quires the reduction of supergravities action. 

Dynkin diagrams, constructing out of a LEGO-like 
system elements such as nodes and lines, give us a way 
of identifying the hidden symmetries without reducing 
the actions. We have demonstrated this procedure for 
maximal higher-dimensional supergravities, though the 
prescription works for other supergravities as well.  

Surely, there are some open questions. For instance, 
it is unclear, how the prescription does work in the case 
of non-toroidal reduction, and it is in general correct to 
talk about hidden symmetries of supergravities compac-
tified on Calabi-Yau spaces in situation when the con-
sistency of the compactification fails. Another interest-
ing question concerns the role of twisted Kac-Moody 
algebras within M-theory. Recall that Kac-Moody-type 
algebras we considered here were of the untwisted type. 
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О Е(11) В М-ТЕОРИИ: 1. СКРЫТЫЕ СИММЕТРИИ МАКСИМАЛЬНЫХ СУПЕРГРАВИТАЦИЙ  

И ЛЕГО ДИАГРАММ ДЫНКИНА 

А.Ю. Нурмагамбетов 

Представлен обзор графического метода классификации алгебр и групп скрытых симметрий D=11, 10 
максимальных супергравитаций в терминах диаграмм Дынкина, форма которых определяется составом бо-
зонных полей супергравитационного супермультиплета. Предлагаемый подход тесно связан с гипотезой 
Веста о скрытой симметрии М-теории, и обсуждаются преимущества данного подхода по сравнению с дру-
гими способами нахождения скрытых симметрий Теории Струн. 

 
 
ОБ Е(11) В М-ТЕОРІЇ: 1. ПРИХОВАНІ СИМЕТРІЇ МАКСИМАЛЬНИХ СУПЕРГРАВІТАЦІЙ  

ТА ЛЄГО ДІАГРАМ ДИНКІНА 

О.Ю. Нурмагамбетов 

Подано огляд графічного методу класифікації алгебр і груп прихованих симетрій D=11, 10 максималь-
них супергравітацій в термінах діаграм Динкіна, форма яких визначається складом бозоних полів супергра-
вітаційного супермультиплету. Запропонований підхід тісно пов'язаний з гіпотезою Веста про приховану 
симетрію М-теорії, і обговорюються переваги даного підходу в порівнянні з іншими способами знаходжен-
ня прихованих симетрій Теорії Струн. 
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