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Analyzed is the symmetry structure of tensionless super p-branes in N=1 superspace enlarged by commuting an-

tisymmetric tensor coordinates z”""»

associated to tensorial central charge generators of N=1 extended superal-

gebra. Using the conversion method we find the constrained Hamiltonian, classical BRST generator and the genera-
tors of global and local symmetries of the p-brane model. Quantum realizations of the BRST generator and symme-

try generators of super p-brane action are discussed.
PACS: 11.25.-w, 11.30.Pb

1. INTRODUCTION

The physical interpretation of the central charges in
supersymmetry algebra as topological charges carried
by branes [1] advanced understanding of the phenome-
non of partial spontaneous breaking of supersymmetry
[2].

Because branes are constituents of M-theory, spon-
taneously breaking supersymmetry, their global and
local symmetries correlate with the symmetries of M-
theory. Studying these symmetries resulted in the model
independent classical analysis of BPS states preserving
Ya, Y2 or % fractions of the partially spontaneously bro-
ken D=4 N=1 supersymmetry [3]. A special interest to
construction of a physical model with domain wall con-
figurations preserving % fraction of the supersymmetry
against spontaneous breaking was analyzed there. That
configurations were earlier studied in superparticle dy-
namics [4] and algebraically realized as the brane inter-
sections in [5].

Then the twistor-like action for tensionless strings
and branes preserving ¥4 fraction of the D=4 N=1 super-
symmetry and generating static solutions for these ex-
tended objects was proposed in [6]. The Hamiltonian
structure of the model was studied and classical symme-
tries were identified in [7]. It seems to be interesting to
investigate the quantum structure of the string/brane
model [6] and the problem of preservation of its rich
classical symmetries on the quantum level.

The study of this problem would give answer for
more general question: whether quantum exotic BPS
states saturated by the p-brane states protect the same
high (M —1)/ M fraction of N=1 global supersymmetry

against spontaneous breaking as in the classical case?
We have started studying the question in [8] on the
example of the p-branes preserving % fraction of the
partially spontaneously broken D=4 N=1 supersym-
metry and found some obstacles for the quantization in

the Qﬁ -ordering previously observed in [9].

Here we analyze the quantization problem applying
the BFV approach [10, 11] and construct quantum Her-
mitian BRST operator and the generators of gauge
Weyl, Virasoro and global OSp(1|8) symmetries ex-
tended by the ghost contributions. We prove the nilpo-
tency of the quantum Hermitian BRST charge, its

(anti)commutativity with the quantum Hermitian gen-
erators of the OSp(1|8) superalgebra and the closure of
this quantized superalgebra.

2. CONSTRAINTS CONVERSION
FOR TENSIONLESS SUPER P-BRANE
IN EXTENDED N=1 SUPERSPACE

New models of tensionless string and p-branes
evolving in the symplectic superspace X, and pre-
serving all but one fractions of N=1 supersymmetry
were recently studied in [6, 12, 13]. For m = 2LP72]
(D=2,3,4 mod8) the space X, extends standard D-
(Xap>04)
a=1.2,..., olD/ 2], by tensor central charge (TCC) coor-

dinates z,,. Coordinates xab:xm(ymC_l)ab and

dimensional super space-time where

[ -1
" niC” Vg + -.. coON-

stitute components of the symmetric spin-tensor Y, . In

. -1
Zab :lzmn(?/mnc dab +2

terms of Y, and the Majorana spinor 6, the action

[6], invariant under the spontaneously broken N=1 su-
persymmetry and world-volume reparametrizations, is
given by

S, = %jdw’po-p#U“meUb, (1)

where W, = Wwbd§” is the supersymmetric Cartan

differential 1-form

W,uab = (%Yab - 2i(6ﬂ9a9b + 6#91,90 ),

0 .
and 8, :ag_ﬂ with &4 =(r,c™), (M=1,2....,p) pa-
rametrizing p-brane world volume. The local auxiliary
Majorana spinor U“ (T,UM ) parametrizes the general-

1

ized momentum P =3 p UU? of tensionless p-

brane and p# (r,o-M ) is the world-volume vector den-

sity providing reparametrization invariance of S, simi-
larly to the null branes [14, 15].
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The action (1) is invariant under (M-1)-parametric
K-symmetry transformations

5]('061 =K, 5KYab = —2i(9al(b + gbKa ), 5KUa =0,
that protect (M-1)/M fraction of the N=1 global super-
symmetry to be spontaneously broken, because of the

one real condition U“, =0 for the transformation
parameters x, (r,o-M) .

For the four-dimensional space-time the action (1)
takes the form

S, =Jdrdpap”uawﬂadﬁd o

+[dud? op" @ 0 qpu +T%0 4570,

This action is invariant under OSp(1|8) transformations,
which is global supersymmetry of the massless fields of
all spins in D=4 space-time extended by tensorial cen-
tral charge (TCC) coordinates [16,17].

The Hamiltonian structure of the action (2), de-
scribed in [7], is characterized by 3 fermionic and 2p+7
bosonic first-class constraints that generate its local
symmetries, as well as, 1 fermionic and 8 bosonic sec-
ond-class constraints taken into account by the con-
struction of the Dirac bracket (D.B.). We found that the
D.B. algebra of the first-class constraints has the rank
equal two and it gives rise to the higher powers of the
ghosts in the BRST generator.

To simplify transition to the quantum theory the
conversion method [18-20], transforming all the pri-
mary and secondary constraints to the first class, has
been applied in [8]. To this end the additional canoni-

cally conjugate pairs (F;",¢), (ISqd 7%) ., (P\9,9")

and the self-conjugate Grassmannian variable f have
been introduced. As a result, all the constraints have
been converted to the effective first-class constraints in
the extended phase space.

The converted constraints for the auxiliary fields are

P} =P} +P ~0, B’ =P +PJ ~0; 3)
PP =P 1 P ~0, PP ~0 (4)
and the converted bosonic constraints

D= (@, 0% d%PY are given by
&)da :Pda _’B‘rﬁdaa ~0,
R +%5%7%7ﬂ ~0; (5)

i _zib o L 5r5aEh Lo,
2

S

They have zero Poisson brackets (P.B.) with the con-
straints (3), (4) and among themselves. The converted

fermionic constraints W = (‘i’a , ‘T’d) originating from
the primary Y-constraints and generating four «-
symmetries take the form

q’a :ﬂa—Zigdpaa—él-iﬂ'aﬁeﬁ (6)
+2pH)2af ~0;

4= (G —gd _gipiag, —41'770"55/-3

~2p")!2u% f =0,
where f*=fis an auxiliary Grassmannian variable char-
acterized by the P.B.

/@), 1@)pp =-i7 (G -5").
The addition of the field f(z,0) restores the forth k-

symmetry and transforms all ¥ -constraints to the first-
class ones. The Weyl symmetry constraint ZW in the
extended phase space is
Ay = (P&, + PYuy)
- u o u o (7)
—2,5’Pr(p) _ 2pMpA(/IP) ~0,

. ~ = 1
where the variables (#% =u® —¢%, P = 5 (P —PB})

and (p° :pT—(pT,FT(p) :%(Pr(p)—Pf(q’))) form ca-

nonically conjugate pairs. Finally, the converted con-

straints ZM of the world-volume o -reparame-

trizations are

Lyt = 00 %aa PO +0y1 2057 +0)y zdﬁ;?dﬁ

+ 00Oy m® + 040, k% + 0 Wy PE +0 W, PY

P o B - pNoy P < fuf 0. ®)
The P.B. superalgebra of the converted first-class con-

straints (3)-(8) is described by the following non zero
relations

{\?“(&),\Ifﬁ(&') }P_B_ = -8idPs5P(G-5"); (9)
$95), %8 (6" }P.B. — _4i®P 5P (G -5, (10)

Ry @)LPYG |, =2PP8P(G-6) (1)

Lyt (60, 2(8") Jpg =—2(3)04 87 (G -6 (13)

Lyt (B). Iy (3" Jpp =Ly (60
~Ly(6)8),)87 (5 -5,

{
1Ly G)PP@E) |, , =0y PSP (G- (12)
{
{

(14)

where y are @, ¥ and ZW constraints. The c.c. rela-

tions have to be added to (9)-(14). The P.B.'s of the re-
maining constraints vanish in the strong sense. Having
the algebra (9)-(14) one can construct the BRST charge
of the tensionless super p-brane.

3. BRST CHARGE AND OSP(1|8)
SYMMETRY GENERATORS

The algebra(9)-(14) has the rank equal unity and may
be presented in the generalized canonical form

Y46, Y56 [y

ZJ'de_HfABC(a_’O—_v|&H)YC(&H)’

(15)
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where f 4B . are structure functions. Let us note that the
algebra (15) generalizes the original algebra [10, 11] by
taking into account 9,,5% (5 —¢&") in the structure func-
tions following from the P.B.'s including the Virasoro
constraints L  (0) such as

L(bﬂ
S

=500y 67 (5-5)57(5-5");

fEuky I, = —51%aM5P(& — 58P (G -6")

+6%0y 6P (6-6")8F (6'-6")
and other ones.

The canonically conjugate ghost pairs of the mini-
mal sector corresponding to the first-class constraints
may be introduced forming the following triads

(@7 C g PP).(3P T PP,

@ ,C s PUPY, (9%, Cop PU), (BT 4, P);
(B, Cugs B (Pa Cuowp ‘)

(PP, cP pir)y, (PA(/IP),C(”)M,}V’%’));

(ZWac(W)aﬁ(W))a (ZM 7CM5PM )
Utilizing nonzero structure functions of the superal-

gebra (9)-(14) one can present corresponding BRST
generator Q of the minimal sector [10,11]

Q=[d7o(C Y42 CoCaf e PONE)

by the following integral along the hypersurface of the
closed super p-brane

Q=[dPo(Cuy® +Cpy &% +C, %% - C, 7

C(P)Tﬁr(p) (16)

+ Cuflﬁua + (_judﬁud + Caﬁ(f)ﬁa +
+ C(p)MPA(/;J) n C(W)Zext +cM e

+4i(C,CpP™ +CyC P P _c,C, Pﬂ“))

B

A%! in Eq.(16) is the generator of the gauge world-
volume Weyl symmetry
Zext =A _zc(P)MﬁA(/[P)’

and Lex’ is the generalized Virasoro generator

Text

L5 =Ly 404 Cop PP +01,Cyy PP

PP 404 CuP% +0,,CyPY
+8MC(W)ﬁ(W) —C(p)NaMﬁlilp) +8MCN13N

+8MC

extended by the ghost contributions.

Using the P.B.'s of the superalgebra (9)-(14) one can
show that the P.B. of the BRST generator density
(7,5), defined by the integrand (16), with itself is

equal to the total derivative

19Q(6),9(6) ) p 5. =04 (CM (Cop®” + adﬁgdﬁ
+ CaBdN)/}“ +C, P - Eﬁd +C(PN plp)
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+CMRG + cNIG! + 4i(C, Cp PP (17

+CuC4PP —C, Ty PP )57 (6 -5,

because of the presence of 0,,67 (6 —3a") in the struc-
ture functions of the superalgebra (9)-(14). But, the con-
tribution of the total derivative in the r.h.s. of (17) van-
ishes after integration in & and &' due to the periodi-
cal boundary conditions for the closed p-brane. It results
in the P.B.-anticommutativity of the BRST charge
Q= [d”00Q(r,5) (16) with itself

{ Q,Q }P.B. =0.

The introduction of the ghost variables leads to the
extension of the OSp(1|8) symmetry generators provid-

ing the P.B.-(anti)commutativity of the OSp(1|8) gen-
erators with Q (16). For instance, the ghost extended

"square roots" 5}, (r,0) and §}; (r,0) of the ghost ex-

tended conformal boost densities and

K]/y (Ta 5-)
K . (7,0) are given by

§,(2.6)=(z5 ~2i0,05)0° +(x,5 - 2i6,0, $)0°

~S =5A 2
+4l(1/l 05—14 95)Pu}l+W u},f+C Pé‘

+C 5P° +4iC,(05P° ~05P°)~8i05C, P Ps°

28 BB . A 585 088~ BB

+4i0 Cy Pﬁ5+4z€5C}/ﬂP - 8i0 C},ﬁP 5

S;(1,6)=(z, ” ~2i0,05)0° +(x5; +2i050,)0°
2

55
S =Csi P

o

—4i(u 495 u 695)N

~ TP Ps —4iC; (05 P° —03P°)~8i0°C 5, Py

+4i05C5 PP +4i0°CP By —8i0,CP ;PO .

Using the densities Q(7,0) and S}, (r,0") we find their
P.B.
(06,5, |,, =—(C"5,)6)0,,57 (6 - &)

and conclude that the contribution of the total derivative
in the r.h.s. vanishes after integration with respect to &
and &'. Thus, the BRST charge Q (16) has zero P.B.

with the conformal supercharges 57,, §};

{Q’SY }P.B. - {Q’SY' }P.B. =0.
The same P.B.-commutativity
{Q.Gjpp =0

between Q and other OSp(1|8) symmetry charges
G= .[dp oG(zr,0) extended by the ghost contributions

will also be preserved, because of the general relation
for the generator densities:

{ZM (6),G(6") }P.B' =-G(6)0,6P(6-6").



Explicit expressions for other OSp(1|8) generators ex-
tended by ghost contributions can be found in [8,21].

4. QUANTIZATION: NILPOTENT BRST
OPERATOR AND QUANTUM OSP(1|8)
ALGEBRA

Upon transition to quantum theory all the quantities
entering the converted constraints and OSp(1|8) genera-
tor densities are treated as operators that implies a
choice of a certain ordering for products of noncommut-
ing operators. At the same time canonical Poisson
brackets

{PM(&),QN(&') }P_B_ =oNS5P (6 -6") (18)
used in classical ~mechanics transform into
(anti)commutators

[ PM(5),0n(5") } =—isN 67 (6 - 6").

It is necessary to provide further nilpotence of the
BRST operator, fulfilment of (anti)commutation rela-
tions of the OSp(1|8) superalgebra and its generator
(anti)commutativity with the BRST operator ensuring
global quantum invariance of the model. In addition, the
Hermiticity of the quantum BRST operator and
OSp(1|8) generators has to be supported. The Hermitic-
ity requirement may be manifestly satisfied if we start
from the above constructed classical representations for
the OSp(1|8) generators and BRST charge in which all
coordinates are disposed from the left of momenta, i.e.

in the form Qﬁ, where Q and P are the products of

the coordinates and momenta contained in Q and the
generators. Then the operator expressions for the latter
are presented in the manifestly Hermitian form com-
posed of the operator products

0P+ @0 gpyr )

where €(Q) and g(P) are Grassmannian gradings of
these coordinate and momentum monomials.

As the result quantum Hermitian BRST generator
acquires the form

. 1 AL oA -

Qy :E_[dpo(Q(z',O')+Q+(r,0')). (19)
Now we are ready to prove that this realization of

Q g preserves its nilpotency and (anti)commutativity

with the Hermitian operators generating quantum reali-
zation of the classical OSp(1|8) superalgebra. The proof

is obvious and based on the observation that Q g and
other considered Hermitian operators are linear in the
momentum operators M (r,0) of the original coordi-
nates and ghost fields. The remarkable property of the

ordered polynomial operators composed of QN (z,0)
and PM (r,0), which form the Weyl-Heisenberg alge-

bra (18), and are linear in PM s the preservation of the
chosen ordering in the course of calculations of their

(anti)commutators. Thus the transition from the P.B.'s to
the (anti)commutators will preserve all classical results
obtained in the P.B. realization of the extended algebra
of the OSp(1|8) generators and classical BRST charge
of the super p-brane. So, the quantum Hermitian BRST
operator (19) occurs to be nilpotent

{QH 5 QH = 0
However, the Hermiticity of Q g and the OSp(1]8)

generating operators by itself is only a necessary condi-
tion for the quantum realization of the physical opera-
tors, because the relevant vacuum and physical states
have also to be constructed. So, the problem of exis-
tence of the selfconsistent quantum realization of the
exotic BPS states by the states of quantum tensionless
super p-brane is reduced to the proof of existence of the
relevant vacuum and the corresponding physical space
of quantum states. At the present time we investigate
this problem.

5. CONCLUSION

The general problem of quantum brane realization of
the BPS states preserving (M-1)/M fraction of partially
spontaneously broken global N=1 supersymmetry at the
classical level was analyzed on example of the twistor-
like p-brane in four-dimensional space-time. Twistor-
like brane models are characterized by a fine tuning of a
large set of classical local and global symmetries caused
by the absence of tension. We have constructed classi-
cal BRST charge and generators of these global and
gauge symmetries and proved the closure of their uni-
fied P.B. superalgebra. The P.B. realization of the nilpo-
tency condition for the BRST charge and its
(anti)commutativity with the unified symmetry genera-
tors have been proved. After that we considered quanti-
zation of the model and proved the preservation of the
above classical results using Hermitian operator realiza-
tion of the symmetry generators and BRST operator.
This Hermitian realization gives the relevant physical
foundation for the solution of the quantization problem.
The remaining problem here is the construction of the
vacuum and the Hilbert space of quantum states of ten-
sionless super p-branes which is under our investiga-
tions.
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CVYIIEP p-BPAHBI C HYJIEBBIM HATSI’KEHUEM B PACHIMPEHHBIX CYIIEPITPOCTPAHCTBAX
/I.B. Yeapos, A.A. ZKenmyxun

[IpencraBneH aHanu3 CTPYKTYypbl CHMMETPHH cynep p-OpaH ¢ HyJeBbIM HaTspKeHHeM B N=1 cyneprpocTpaHcT-

my-m
BE, paCIIMPEHHOM KOMMYTUPYIOIIMMHA aHTUCUMMETPUYIHBIMH TCH30PHBIMH KOOpAWUHATaAMH zZ ! ’ , OTBCHAKOIINMHU

reHepaTopaM TEH30PHBIX HEHTPAIbHBIX 3apsioB N=1 pacmmpeHHol cynepanreopsl. Mcnonb3ys MeTo KOHBEPCHH,
momy4deHsl GpyHknus ['amunerona, knaccuueckuit BPCT-reHepaTop u reHepaTOphl TI00aIbHBIX U JIOKAIBHBIX CHM-
MeTpuii Mozeneit p-opan. O0cyxnatorcst kBantoBbie peanuzannu bPCT-reneparopa u OSp(1|8)-reHeparopos.

CYIIEP p-BPAHU 3 HYJIBOBUM HATSII'OM Y PO3IHINPEHUX CYIIEPITPOCTOPAX
/.B. Yeapos, 0.0. Kenmyxin

[IpencraBneHnii aHaNi3 CTPYKTYpH CHUMETPi cymep p-OpaH 3 HyNBOBHM HaTsAroM y N=1 cymeprpocTopi,

ny--m . . .
PO3LIMPEHOMY TEPECTABHUMH AHTHCHMETPUYHHMM TEH30DHUMH KOOPAMHATAMH z | 7, sKi BiIMOBiZarOTh

reHepaTopaM TEH30pPHUX LEeHTpalbHUX 3apsniB N=1 po3mmpeHoi cynepaireOpu. 3 BHUKOPHCTaHHSM METOAY
KoHBepcii orpumano QyHkuito ["aminsrona, knacnunnii BPCT-renepaTtop Ta reHepaTopy riio0abHAX Ta JOKATBHUX
CUMeTpiit Monenelt p-6pan. O6roBoproroThes kKBaHTOBI peanizarii BPCT-rereparopa Ta OSp(1|8)-renepaTopis.
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