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The distribution of electrical potential and electron density near foil, resulting in vortical electron dynamics at
interaction of an intensive laser pulse with a foil, is considered.
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1. INTRODUCTION

The interaction of an intensive laser pulse with a foil
with the purpose of ion acceleration investigates in the world
[1-9]. Laser acceleration of ions was observed from 1960s
[10]. The electron semi-vortex or vortex is formed near an
irradiated foil at certain conditions. We consider conditions
of semi-vortex formation at foil irradiation by laser pulse.

At effect of an intensive laser pulse on a metal foil
the high-energy electrons direct through it and form near
to a surface of the foil electron layer [1]. Thus electrons of
the foil receive a moment from the driver. During the
moment exchange the electrons get longitudinal Vg, and
radial Vg velocities. At electron leaving from the isolated
foil the positive charge with surface density 0 collects on
it. So besides the electrical potential of the volume charge
with amplitude -4, which is formed by an electron layer
at the foil’s surface [1], the polarized electrical potential
¢o 1s formed between the foil and this electron layer. O is
arisen up to some value, when @, +¢q reaches the electron
energy

Pot@a=(mec’/e)(vq-1). (M
At not large ¢4/p.<1 one can write approximately
0=m.c*(Y-1)/4T?AE,,, )

After that the electrons come back to the foil. They come
back on larger radius, than they left foil. It is determined
by initial radial electron velocity V., and also by their
scattering on r by an own volume charge. According to
[11] it can be also determined by magnetic pressure. If
radius of an electron flow, leaving the foil, rq is less in
comparison with the longitudinal dimension of area of
their braking r,<Ag,, a coming back flow extends on r on
Ar,=A&,. At certain conditions A&q is the Debye radius of
high-energy (HE) electrons A&q=r4q [1]. Then we derive in
nonrelativistic approximation

0=(Vy/4e)(meny/TD)">. 3)
This layer is extended Lo(t) during ion acceleration up to
60 MeV [1].

If rg>>Ar,, the vortex is not formed. The vortex can
be formed, if r<Ar,. At achievement of the flow velocity
V.=c one can derive for certain conditions

DEAc(Yer1) /00, 0=(c/20) (e 1) (g (4)

0 can be estimated from the balance of electron flows

0=2n,1,"A&/T(Ar,) (5)
One can see that 0 is depended on ratio ro/Ar,,.

2. ELECTRIC POTENTIAL DISTRIBUTION
AT ELECTRON FLOW LEAVING FROM FOIL

1D numerical simulation [12] has shown, that at
injection of a cold electron beam into plasma 0<z<L the

strongly nonlinear structure - jump of potential can be
formed near the plasma boundary. We consider properties
of similar connected jump and dip of electrical potential.
These jump and dip are formed by electrons, which are
accelerated by a driver at its interaction with a foil. We
will show, that at leaving of HE electron flow with
density nq from isolated foil into vacuum the jump and dip
of electrical potential, similar to [13], is possible to form
near the foil. These jump and dip return electrons to the
foil and accelerate ions. Let's consider at first the potential
distribution along axis of HE electron flow in one-
dimensional approximation in the case of relativistic HE
electrons.

The longitudinal structure of electrical potential
along axis of the narrow flow represents potential jump
near the foil and potential dip in the flow. In the limiting
case 1;<<A&, the longitudinal electrical field along axis of
the flow can be presented approximately in the following
kind

E =21 {0+ny[-22+A& +(1+2°) (1™ +(8&-2)") " 1} (6)
The potential equals maximal value @,=¢(z=0) on the foil
and it equals zero in some point z, inside the flow. On the
interval zy<z<Ag, the electrical potential dip with
amplitude -4 is distributed.

We assume that electrons of a plasma layer formed
near the foil’s surface are low-energy. Then they quickly
fall on the foil. Thus near the foil single group of
electrons remains: HE electrons with density ng. The
longitudinal velocity of the polarized electrical potential
and of the volume charge potential is approximately equal
to velocity of front of accelerated ions. If HE electrons are
possible to present as a beam with finite energy width, far
from a point of their reflection their density grows from
the foil’s surface under the power law

ny(z)=ng(1-y4%) [ 1-(1+e@/me?) ] 2. (7
The maximal negative charge ne™=ny(2Vy/Ving)"*/vs*? is
reached on some distance from the foil. V4 is the thermal
velocity of HE electrons. If the distribution function of
HE electrons can be presented as equilibrium Maxwell
distribution function with temperature T, their density
falls down from the foil’s surface according the
exponential law
N4(z)=ngexp[(9-@o)e/Ty] . (®)
With the help (7) one can show that at 9. =(@,+@a)(2Vg/C)Y,’
the reflection of HE electrons begins.

For essential ion acceleration, the considered quasi-
stationary distribution of the electrical potential should be
supported during long time. Electrons transfer a
momentum to the polarized electrical potential and to the
volume charge potential. The flow of momentum
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transferred to the polarized electrical potential and to the
volume charge potential by reflected HE electrons equals
2ngmc*(yq2-1)/yq (or ngTy). In a field of polarized electrical
potential and of volume charge potential ions receive a
momentum. The speed of increase of an ion momentum is
approximately equal to mn,LdV/dt. L is the width of area
of ion acceleration. The ions also select energy from the
polarized electrical potential and from the volume charge
potential. The speed of energy selection by ions is
approximately equal to minaLV.dVi/dt. The HE electrons
at interaction with the polarized electrical potential and
with the volume charge potential lose energy. The flow of
energy, transferred to the polarized electrical potential and
to the volume charge potential by HE electrons equals
ngmc2Vi(y-1/y, (or VinT,)). One can see that the
balance of energy flows is reduced to balance of
momentum flows. Using the balance of momentum flows
of particles, which interact with the polarized electrical
potential and with the volume charge potential, one can
derive approximately the expression for speed of ion
acceleration:

dVi/dt=2n,mc*(y,>-1)/ygmineL. )

That the HE electrons effectively accelerate ions and
not fall on walls, the radial forces should confine their in
the region of ion localization. As the low-energy electrons
quickly fall on the foil, one can write

noi(z)=ngyq> (10)
from the condition of radial confinement of the HE
electrons. (10) is correct at semi-vortex or vortex
formation. The inequality (10) is correct at ys>>1, np<<n,
and at yo>1, npi<ng.

Let's derive the equation, which describes a structure
of the polarized electrical potential and the volume charge
potential, and estimate their width. As the law-energy
electrons fall quickly on the foil, the structure of the
polarized electrical potential and of the volume charge
potential is determined by the HE electrons and by ions.
Integrating the Poisson’s equation on ¢, neglecting the
small interval, closed ¢=-@q4, where the HE electrons are
reflected, in one-dimensional approximation we derive

(0¢/02)*=(0@o/0z)*-4meO(0@o/0z)+8mmc yqng(1-y42) X
XA[[1-e($o-0)/yamc -y, ] *-(1-y4?) "} -4melno(z)do.(11)
Using the approached equality (¢ot+dq) = mc*(Yq-1)/e and
condition 0¢/0z=0 at p=-¢4, we derive
0po/0z=2me0+
+{(2meo)+4myamc*(1-y,H[2ng(1+yg")-nal} 2 (12)
Let's obtain approximately width of the jump and dip:
Az=( o+ 4)/0po/Oz~ (13)
~(c/0pqo)VYe/[gH(g7+2-10i/0g) ], g=27e’0/Wyqome VY,
In the case of dense plasma its polarization dn=ng-ny; is
small. If selfconsistent ion dynamics follows for electric
field distribution such that dn=const, one can obtain
Az~(c/aq)VYy/ [gH(gH+n/ng) ]
Using (4), (5) one can obtain g=r,%/(Ar)’. One can see that
the electrical field is strengthened near foil by o.

In approximation of the HE electrons as a thin flow
we obtain from (4)

0 (2)=0-2Te0z-Tien, {r,°%
XIn{[z+(1+2°) "] [A& -z (1" (A&

2)) Ve[ D& HAE) T} + (14)
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+AE/2-(AE -22)* 2 +2(ry +27) P+
HBE )1 +HDE 7)) D +HDED) 7,
0<z<A&,. The minimal value of the potential ¢min equals
approximately at z=Ag&/2

Pmin=0-TeOAE -Tlen,r, In(AE o/ 21,) (15)
We derive approximately from (4)
0Q/0z=2Tie(0+nyr,) (16)

One can see that with decrease r, at ng=const O0@,/0z
decreases. However, at focusing of the HE electrons with
their flow constancy the field, accelerating ions,
increases. Also one can see that the field, slowing down
of the thin flow of the HE electrons, is smaller in (yro/cV
vq- Hence, the depth of penetration in plasma of the thin
flow of electrons is more and longitudinal size of the
semi-vortex or vortex in this case is more.

Because §o=2T10¢€(c/0q0) VY, then

Omin/§o=-[Tengr’ In(A&y/2r) )/ [2TI0(C/ o) VYo .

Let's consider the stability of relative electron flows

concerning HF perturbations on the basis:
1-0/7%-(1-a)[(z-y) +R(z+y)?]/2y,*=0 . (17)

a=nge/Ngi, Z=0/®, , y=kVu/®, , R is the parameter of radial
distance between direct and opposite electron flows. If
R=1, the counter electron flows are on the same radius.
From (17) it follows that in the region of jump and dip the
noise with the large phase velocities can be generated.
Similar to [12, 14] the noise does not destroy the jump
and dip due to: width of electron distribution function;
inhomogeneity of potential, which breaks the condition of
wave - particle resonance; and due to large relative
velocity of noise and jump. Also the noise does not
destroy the jump and dip due to decrease of ng..

Let's consider the stability of relative electron flows
concerning LF perturbations on the basis:

1+o/(kdo)*-(1-a)[(z-y) 4+ R(z+y) /2y, =0 .  (18)

de=(Toc/4mne?)". From (18) one can show, that at R=1
and nq., below critical, determined by the inequality

(Vino/ Vo) g0t (kdo)* (19)
the potential jump becomes unstable relative
perturbations with small phase velocities. Thus, the

realization of counter electron flows as a vortex can
stabilize jump.

If the energy of the HE electrons concerns
nonrelativistic case, let us also consider this case. From
the kinetic eq. one can derive the electron distribution
function in 1D approximation, integrating which on
velocity, we obtain the density perturbation:

Sn((p) Ne-Ni=-ni+f3,

0 Wy e o
b= o, VT2

[ ]
Q[Fv]/ﬂm I

2

sl/lv, s v e
From (20) one can see that the density of the HE electrons
increases. This results in negative volume charge. The
maximal value ng is reached in the region of strong
electron braking:

4(P)=NgVo/(Vo(Tg/2)"?) P=ng(Vo(2/Tg)*) "2 . (21)
At @1=9o-(V4-(2To)"?)? the reflection of the HE electrons
begins.

(20)
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From balance of momentum flows we derive
similarly to (9):
dVi/dt=2n;mV /min,L (22)
We determine width of jump and dip from (20)
similarly to (13):
Az=($¢t+4)/0po/Oz.
0¢/0z=2ned+[(2ne0)*+8mmV  (n-np/4) 172
One can see that the charge accumulation on the foil
strengthens the accelerating field. If the distribution
function of HE electrons can be presented as equilibrium
Maxwell distribution function with temperature T, in
approximation e0<<V,(2mn¢/m)"? we obtain from (23)
09y/0z(Tyng)"?. With increase n, and T, the field grows
and reaches 10 GV/cm for n,=10"cm™ and T,=1 keV [1].
Thus, using (3), we obtain
AZ=4V o/ 0. (24)
In the case of small polarization dn=nq-n¢<<ne; of dense
plasma, consisting from HE electrons and ions, one can
estimate

(23)

Az=4(V/0p9)(ng/Sn) ">,
The electrons are extended in the first front of the flow
due to the initial radial velocity, obtained as a result of
scattering, and due to strong volume charge of the flow.
On the foil large O is supported, which influences on the
electron flow dynamics. The electron dynamics can be
represented as semi-vortex or vortex.
The vortical electron trajectories are described by
OV 12-(e/m)d]=-V.0:V,, 6:[Vi/2-(e/me)dp]=-V.0,V..
Introducing radius of curvature of electron trajectories
in the semi-vortex or vortex, one can derive balance of
forces, effecting on electron. From this balance one can
conclude that the vortex’s radius is close to longitudinal
its dimension.
Also the vortical electron trajectories are described
by the equation

D¢ = |V.n|. e=v22-pem. (25)

One can see that the spatial change of value m.V?%/2-e¢ is

determined by vorticity N = |0 x V|. From this relation
we derive for 1

TR A% (26)

The electron trajectories form the semi-vortex in the

region of essentially 3D distribution of an electrical field.
For the vortex description we also use eq. [15

d,((1 - 0ye)/ne) = 020 - 0 )0 fV .27)

As N = ggf] and all is homogeneous on azimuth, for
nonrelativistic electurons we obtain

(VO )n/n.) = 0, n=ntag/me  (28)
One can see that the maximal vorticity is reached in the
region of the largest electron density inside the region of
volume charge.

In such electrical field the ions of a plasma layer,
formed near foil, are accelerated [1]. The similar ion
acceleration by the virtual cathode, formed by electron
beam, was observed earlier. The ions are accelerated by
volume charge of the HE electrons [1], and by polarized
potential, appeared between the isolated foil and electron
layer.

The energy of accelerated ions can be determined by
potential of shock and dip e€P=T,. If the accelerated ions
interact with shock and dip for a long time and ion
velocity is achieved to velocity of electron flow, which
determine structure and value of an accelerating field, the
maximal ion energy €7,.x equals

€ =T my/m..
In experiments (see [1]) €7,,=60MeV was achieved.
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BUXPEBASA TUHAMUKA JIEKTPOHOB B IIVIABME, HABJIIOJAIOIIAACS ITPU
B3AUMOJIEMCTBHHU JIASEPHOT' O UMITYJILCA C ®OJbI'OI

B.U. Macnos, A.M. Ezopos, U.H. Onuwenko, O.B. Cyxocmasey,

IToka3zamno,

YTO TMPUd B3aUMOJICHCTBHH HMHTCHCUBHOIO JIa3ePHOIO HUMIIyJibca C (ONBrod pacmpeseiacHue

QJIEKTPUYIECKOTO MOTEHMAIa 1 INTOTHOCTEH YaCTHI] TaKoOBO, 9TO B OKPECTHOCTH q)OHLI‘I/I JAWMHaAMHUKa 3JICKTPOHOB MOXET

OBITH BUXPEBOM.

BUXPOBA JIMHAMIKA EJIEKTPOHIB B ILJIA3MI, IKA CHHOCTEPITAEThCSI ITIPA B3AEMO/I1i
JIABEPHOT'O IMITYJIBCY 3 ®OJIBI'OIO

B.I. Macnos, O.M. €z0pos, .M. Onuwenxo, O.B. Cyxocmageuyp

[Toka3zaHo, 110 TIpH B3a€MOZI] iIHTEHCHBHOTO JIA3EPHOTO IMITYIIBbCY 3 (DOIBIOI0 PO3MOALT EIEKTPHIHOTO MTOTEHITIAITY i
TYCTHH YacCTHHOK € TaKUM, 1110 B OKOJIMII (hOJBI'M AWHAMIKA €JIEKTPOHIB MOXKe OyTH BUXPOBOIO.
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