ОПРЕДЕЛЕНИЕ ОБОГАЩЕНИЯ УРАНОВЫХ МАТЕРИАЛОВ ГАММА-СПЕКТРОМЕТРИЧЕСКИМИ МЕТОДАМИ

Д.В. Кутний, Ю.Н. Телегин, Н.П. Одейчук, В.А. Михайлов, В.Е. Товканец Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина E-mail: d_kutniy@kipt.kharkov.ua, факс +38(057)335-17-39, тел. +38(057)335-64-02

Исследовалась суммарная ошибка определения величины обогащения методами гамма-спектрометрии с использованием коммерчески доступных программ анализа гамма-спектров урановых образцов MGAU (LLNL, CША) и FRAM (LANL, США). При проведении исследований использовались урановые образцы с обогащением 0,71; 4,46 и 20,1% по ²³⁵U. В качестве детекторов гамма-излучения использовались детекторы на основе германия высокой чистоты: коаксиальный детектор (серии GC) и планарный низкоэнергетический детектор (серии LEGe). Показано, что имеющееся в распоряжении ННЦ ХФТИ экспериментальное оборудование и средства математической обработки позволяют измерять неразрушающим методом обогащение урановых образцов с точностью не хуже 2%.

ПОСТАНОВКА ЗАДАЧИ

В последнее время в Украине повышенное внимание уделяется проблеме совершенствования системы учета и контроля ядерных материалов (ЯМ), которая состоит из нескольких основных задач: информационной поддержки; обеспечения нормативной документацией; создания, совершенствования и внедрения методик измерений и контроля; создания и обеспечения аппаратурой для измерений и контроля ядерных материалов; обучения персонала современным методам работы [1].

Система учета и контроля ядерных материалов гарантией безопасности является важной деятельности, связанной с использованием ядерных материалов. Основным документом, регулирующим подобный контроль, является Положение 0 государственной системе учета и контроля ЯМ, Постановлением **утвержденное** Кабинета Министров Украины № 1525 от 18.12.1996 г. [2]. В указанным соответствии Положением с Государственным комитетом ядерного регулировании Украины были разработаны Правила ведения учета и контроля ядерных материалов на предприятиях, связанных с их использованием, перевозкой, хранением или изготовлением (Приказ ГКЯРУ № 97 от 26.06.2006 г). Необходимость наличия системы учета и контроля на предприятии указывается в особых условиях лицензии на осуществление предприятием деятельности. связанной с использованием, перевозкой, хранением или изготовлением ЯМ. В пункте 6 Постановления КМУ № 1525 особо подчеркивается, что учет и контроль ЯМ является необходимым условием получения предприятием разрешения на осуществление деятельности в сфере использования ядерной энергии.

Кроме того, в соответствии с вышеуказанными нормативными ГКЯРУ документами было разработано Положение 0 системе измерений ядерных материалов для предприятий, использованием, занимающихся хранением,

изготовлением ЯМ и осуществляющих над ними государственный учет (Приказ ГКЯРУ № 24 от 13.02.2006 г.). В Положении отмечается, что система измерений ядерных материалов является неотъемлемой частью государственной системы контроля и включает vчета и в себя соответствующий персонал, процедуры и оборудование, используются которые для определения количества полученного, изготовленного, отгруженного, утерянного или другим образом извлеченного из инвентарного количества ядерного материала, а также для самого инвентарного определения количества материала. Одной из первоочередных задач системы измерений ядерных материалов является получение данных о количественном и изотопном составе плутония, урана, тория. имеющегося, изготовленного, полученного в зоне баланса либо отправленного из нее. В пункте 3 данного Положения определены границы неопределенности результатов измерений (табл. 1), которые должны обеспечивать используемые на предприятии методы разрушающего и неразрушающего анализа ЯМ.

Как уже упоминалось ранее, система учета и контроля ядерных материалов включает в себя ряд организационно-технических мероприятий, в числе которых значимое место занимают гаммаспектрометрические методы неразрушающего контроля.

В подавляющем большинстве случаев методы неразрушающего контроля являются более экспрессными, дешевыми и доступными, чем разрушающий химический анализ, требуют меньшей подготовки персонала, проводящего измерения, не производят каких-либо и изменений состоянии значительных в Гаммаисследуемого материала [3]. спектрометрические измеряют методы вынужденное излучение, или спонтанное ядерным материалом, испускаемое которое, зачастую, является уникальным для исследуемого изотопа, и его интенсивность может быть связана с массой изотопа.

Таблица 1	
-----------	--

Требования ГКЯРУ к точности измерений свойств ядерных материалов на предприятиях Украины

Variandaria	Границы нео	пределенности	
измеряемая	Разрушающие	Неразрушающие	
величина	методы	методы	
Масса урана	0,5% (при пробоотборе)	5%	
Содержание			
урана (твердые	-	20%	
отходы)			
Обогащение урана по ²³⁵ U	0,2%	2%	
Изотопный	0,2% (изотопы	20/	
состав урана	²³⁵ U, ²³³ U)	270	
Macca	0,2% (при	20/	
плутония	пробоотборе)	2%0	
Содержание			
плутония		15%	
(твердые	-		
отходы)			
Изотопный			
состав	0,2%	2%	
плутония			
Масса тория	0,5% (при пробоотборе)	5%	
Выгорание	1 1 · · /		
(ядерное	-	10%	
топливо)			

Измерение обогащения урана по изотопу ²³⁵U является одной из основных задач в системе измерений ядерных материалов. Преобладающая доля таких измерений выполняется с помощью пассивного неразрушающего метода анализа, основанного на регистрации гамма-излучения, которое сопровождает распад изотопов ²³⁵U и ²³⁸U.

В настоящее время для проведения измерений методом неразрушающего анализа на предприятиях атомной промышленности применяют портативные приборы нескольких типов, созданные как в нашей стране, так и за рубежом. Вместе с тем, из-за отсутствия регламентированной процедуры определения метрологических характеристик этих специализированных приборов, оказывается сложно оценить качество результатов измерений, полученных с их помощью [4].

Учитывая требования ГКЯРУ (Приказ № 24 от 13.02.2006 г.) и проблему оценки качества неразрушающих измерений ядерных материалов в целом, видится актуальным проведение экспериментальных исследований по тестированию измерительного оборудования на предприятиях Украины, связанных с использованием, перевозкой, хранением или изготовлением ЯМ.

Целью данной работы стала оценка возможности использования гамма-спектрометрического оборудования ННЦ ХФТИ в рамках создания системы измерений ядерных материалов на предприятии, а именно: оценка суммарной ошибки определения величины обогащения методами гамма-спектрометрии с использованием коммерчески доступных программ анализа гаммаспектров урановых образцов MGAU [5] (LLNL, США) и FRAM [6] (LANL, США).

МЕТОДИКА ЭКСПЕРИМЕНТА

При проведении исследований использовались три стандартных урановых образца из наборов аттестованных ядерных эталонных материалов CRM 146 и CRM 969 (Certified Reference Material) с обогащением 0,71; 4,46 и 20,1% по ²³⁵U. Эти наборы содержат эталоны урана различного обогащения, аттестованные с точностью лучше ± 0,1%. Наборы изготовлены и аттестованы двумя организациями: СВNМ (Гиль, Бельгия) и NBL (Аргонн, США) и представляют собой экземпляр эталонных материалов для неразрушающего контроля, которые имеют международный сертификат. Параметры стандартных образцов приведены в табл. 2.

Таблица 2

Параметры стандартных образцов

Тип	Обогаще-	Macca	Толщина	Плот-
образ	ние по	U_3O_8 ,	образца,	ность,
ца	массе	Г	MM	г/ с м ³
	²³⁵ U, %			
CRM	0,71	200,1 ±	$20,8 \pm$	2,50
969		0,2	0,5	
CRM	4,46	200,1 ±	15,8±	3,29
969		0,2	0,5	
CRM	20,1	$230,05 \pm$	18,8±	3,18
146		0,1	0,5	

В качестве детекторов гамма-излучения использовались два детектора на основе германия высокой чистоты: коаксиальный германиевый детектор (серии GC) планарный И низкоэнергетический германиевый детектор (серии Коаксиальный германиевый LEGe). детектор GC 2018 - характеризуется эффективностью регистрации гамма-излучения на уровне 20% и энергетическим разрешением 1,8 кэВ для энергии 1332 кэВ. Диапазон энергий регистрируемых гаммаквантов от 50 кэВ до 10 МэВ. Размеры НРGекристалла Ø 51,5×48,5 мм.

Второй используемый детектор – планарный низкоэнергетический германиевый детектор GL 0515R характеризовался энергетическим разрешением 550 эВ для энергии 122 кэВ. Размеры HPGe-кристалла Ø 25,5×15,0 мм.

Для обработки сигнала использовался цифровой многоканальный анализатор DSA-1000 (Canberra). В состав анализатора входит цифровой сигнальный процессор на 16000 каналов, стабилизатор спектра, универсальный источник высокого напряжения и память на 16000 каналов спектра. Анализатор соединялся с компьютером по интерфейсам USB и работал под управлением базового программного обеспечения Genie-2000.

При работе с коаксиальным детектором измерялись гамма-спектры в области энергий 120...1001 кэВ с последующим их анализом

программой FRAM. Для уменьшения фоновой загрузки детектора импульсами от рентгеновских квантов и низкоэнергетических ($E_{\gamma} < 100 \text{ кэB}$) гамма-квантов непосредственно перед детектором помещался поглотитель ~ 1,2 мм Cd. Расстояние «образец–детектор» для каждого образца выбирали в пределах 20...50 мм, исходя из соображения, чтобы мертвое время регистрирующей системы не превышало 10%.

При работе с низкоэнергетическим (планарным) детектором измерялись гамма-спектры в области энергий 80...205 кэВ с последующим их анализом программами FRAM и MGAU. Образец размещался непосредственно перед окном детектора.

Стандартная длительность экспозиции составляла 30 мин.

Программа MGAU (Multi-Group Analysis for Uranium) является адаптацией пакета анализа плутониевых образцов MGA, разработанного в 1990 г., и предназначена для работы с урановыми образцами [5]. Данный метод анализа основан на измерении интенсивностей близких по энергии линий гамма- и рентгеновского излучений ²³⁵U и ²³⁸U в энергетической области 89...100 кэВ. В этом диапазоне излучаются две практически одинаковые по энергии гамма-линии: 92,38 и 92,80 кэВ, которые принадлежат²³⁴Th (см. далее схему распада). В этой области также присутствуют линии рентгеновского характеристического излучения Th, 93,35 кэВ (ThKa1) и 89,96 кэВ (ThKa2), которые испускаются непосредственно в распаде $^{235}U \rightarrow ^{231}Th$, а также менее интенсивные рентгеновские линии Ра: 95,86 кэВ (РаК α_1) и 92,28 кэВ (РаК α_2) из β -распада ²³¹Th \rightarrow ²³¹Pa.

$$\begin{array}{c} {}^{238}_{92}U \xrightarrow{\alpha} {}^{234}_{90}Th \xrightarrow{\beta} {}^{234}_{90}Th \xrightarrow{\beta} {}^{234m}_{91}Pa \xrightarrow{\beta} {}^{1,17 \text{ мин}} \\ \\ \left| {}^{234}_{92}U \xrightarrow{\alpha} {}^{232}_{2,45\cdot10^5 \text{ nem}} \right| {}^{230}_{90}Th \xrightarrow{\alpha} {}^{7,7\cdot10^4 \text{ nem}} \cdots$$

Также небольшой вклад дают гамма-линии 96,09 кэВ (235 U); 89,95 и 99,28 кэВ (231 Th), которые вместе с указанными рентгеновскими линиями определяют вклад 235 U в данную область спектра. Кроме этого, одними из наиболее интенсивных линий на данном участке спектра являются линии рентгеновской флуоресценции урана: 98,43 кэВ (UK α_1) и 94,65 кэВ (UK α_2), которые индуцируются собственным гамма-излучением образца и вместе с соответствующими линиями К $_{\beta}$ -серии всегда присутствуют в спектре.

Наличие такого большого количества линий на узком участке спектра делает необходимым процедуры разложения сильно использование Высокая наложенных пиков. эффективность реализованного в MGAU итерационного процесса разложения достигается за счет использования идеологии функции отклика. Суть ее состоит в том, что для каждого изотопа строится функция отклика, которая описывает его вклад в данную область спектра. При этом максимальным образом используется имеющаяся

информация о положении линий в спектре излучения данного изотопа и продуктов его распада, а также их интенсивностях [5]. За счет этого достигается существенное уменьшение количества параметров, которые определяются в результате подгонки, и значительно возрастает скорость обработки сложного участка спектра. При построении функций отклика надлежащим образом учитывается разница в форме рентгеновских и улиний, параметры которых оцениваются по одиночным интенсивным линиям 98,43 кэВ (UKα₁) и 185,7 кэВ (ү²³⁵U). Эти же линии используются для оценки энергетической шкалы спектра. Таким MGAU проводит образом, подгонку нормализованных функций отклика на участке 89...100 кэВ спектра полученным И по интенсивностям откликов рассчитывает содержание ²³⁵U и ²³⁸U. Содержание ²³⁴U также определяется программой при обработке одиночной линии 120,9 кэВ.

Программа FRAM (Fixed-energy Responsefunction Analysis with Multiple efficiency) [6] была разработана для анализа в первую очередь плутониевых и смешанных уран-плутониевых образцов. Данная программа использует для обработки γ-спектров линии излучения ²³⁴U, ²³⁵U и ²³⁸U в широком диапазоне энергий 120...1001 кэВ (табл. 3) [7].

Таблица 3

Энергии, используемые FRAM при анализе
изотопного состава урана

²³⁴ U, кэВ	²³⁵ U, кэВ	²³⁸ U, кэВ
120,9	143,8 163,4 185,7 195,0 202,1 205,3	258,4 742,8 766,4 786,3 880,5 883,2 945,9 1001,0

FRAM, так же как и MGAU, автоматически проводит обработку измеренного гамма-спектра с использованием идеологии функции отклика. Далее строится внутренняя калибровка по эффективности отдельно лля высокоэнергетической и низкоэнергетической областей спектра. После этого обе калибровки «сшиваются» с использованием нормировки по пику 258 кэВ ^{234т}Ра, наличие которого в спектре является критическим с точки зрения возможности проведения анализа. Вообще лиапазон 240...260 кэВ для FRAM является очень важным, так как точность определения площади пика 258 кэВ фактически определяет окончательную точность измерения обогащения ²³⁵U, поскольку пики от ²³⁸U, используемые для определения изотопного соотношения, находятся в высокоэнергетической части спектра, а

соответствующие пики от ²³⁵U – в низкоэнергетической.

Определенная таким образом эффективность используется для расчета изотопных отношений в измеряемом образце урана. Аналогично MGAU метод FRAM не нуждается в проведении калибровочных измерений и введении поправок на эффект матрицы и поглощение в образце и стенках контейнера.

В 2005 году авторами пакета программного обеспечения FRAM (LANL, CIIIA) была выпущена новая версия продукта v. 4.4. Основные отличия этой версии (применительно к анализу урановых образцов) следующие: добавлена поправка на прогнозируемое количество ²³⁶U; введена поправка на неравновесное состояние ²³⁴Pa; добавлена возможность анализа низкоэнергетической части спектра (80...205 кэВ).

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В ходе проведения исследований было измерено около 100 γ-спектров стандартных урановых образцов с обогащениями 0,71; 4,46 и 20,1% по ²³⁵U при помощи коаксиального и планарного Ge-детекторов. На рис. 1 и 2 приведены спектры уранового образца с обогащением 4,46% по ²³⁵U, полученные с помощью коаксиального Ge-детектора.

Следует отметить, что при обработке результатов измерений с помощью программы FRAM могут быть использованы γ -спектры, полученные как с помощью коаксиального, так и с помощью планарного Ge-детекторов. Программа обработки γ -спектров MGAU корректно работает при использовании спектров, полученных только с помощью низкоэнергетического планарного Ge-детектора.

Рис. 1. Гамма-спектр уранового образца с обогащением 4,46% по²³⁵U, полученный с помощью коаксиального Ge-детектора

Рис. 2. Участок ү-спектра уранового образца с обогащением 4,46% по ²³⁵U, полученный с помощью планарного Ge-детектора

Рис. 3. Статистические распределения результатов измерения обогащения стандартного образца (0,71% по²³⁵U): а – коаксиальный детектор; б – планарный детектор

Результаты обработки серии спектров для каждого стандартного уранового образца, измеренные с одинаковой статистикой, подвергались статистической обработке: находились среднее значение обогащения *Enr* и среднеквадратичное отклонение *SD*:

$$\overline{Enr} = \frac{1}{n} \sum_{i=1}^{n} Enr_i ,$$
$$SD = \left[\frac{1}{n-1} \sum_{i=1}^{n} \left(Enr_i - \overline{Enr}\right)^2\right]^{\frac{1}{2}},$$

где *n* – число измерений; *Enr*_i – значение обогащения, полученное обработкой *i*-го спектра.

На рис. 3, 4 и 5 в виде гистограмм приведены статистические распределения результатов измерений величины обогащения для различных образцов. Точка с интервалом погрешности по оси абсцисс соответствует среднему значению Enr среднеквадратичному обогащения И отклонению SD, полученным по приведенным ранее формулам.

Кроме того, при проведении измерений с коаксиальным детектором была проведена оценка величины относительного отклонения измеренного

значения обогащения *Enr*_{meas} от декларированного значения *Enr*_{decl} в зависимости от расстояния «образец-детектор» для образца обогащением 4,46%. Результаты измерений не обнаруживают зависимости величины измеренного обогащения от расстояния «образец-детектор». Таким образом, авторам в новой версии программы FRAM (v. 4.4) удалось должным образом скорректировать вклад «истинных совпадений» от каскадных гаммаквантов, обсуждаемый подробно в работе [6].

Отметим, что на рис. 3, 4 и 5 приведены лишь некоторые результаты обработки экспериментальных спектров с коаксиального детектора – программой FRAM и с планарного детектора – программой MGAU. Отклонения значения обогащения от декларированной величины для остальных результатов обработки лежат в интервале от 1 до 3,8%.

В пакете FRAM в отличие от MGAU предусмотрено несколько различных алгоритмов обработки результатов измерений, использование которых осуществляется посредством выбора необходимого набора параметров с помощью

редактируемого файла. Пакет содержит целый набор рекомендуемых входных файлов, включая отдельные файлы для анализа низкообогащенного урана (менее 10% по ²³⁵U) и высокообогащенного урана (более 70% по ²³⁵U). Была проведена обработка измеренных спектров с использованием всего набора с целью нахождения варианта обработки, дающего наилучшее согласие с декларированными величинами обогащения для всех образцов. На рис. 3,а, 4,а и 5,а приведены результаты обработки с использованием файла входных параметров: UCoax_121_1001.pst из пакета FRAM.

Из рисунков следует, что максимальное отличие измеренного обогащения от декларированной величины в этом варианте обработки не превышает 1,5%.

выводы

На основе полученных результатов можно сделать следующие выводы:

 Проведена оценка суммарной ошибки определения величины обогащения методами γспектрометрии с использованием программ анализа γ-спектров урановых образцов MGAU и FRAM.

2. Использование коаксиального Ge-детектора и программы обработки γ -спектров FRAM позволяет выполнять измерения обогащения (по ²³⁵U) урановых материалов с точностью ~ 1,5 %.

3. Использование планарного Ge-детектора и программы обработки γ-спектров MGAU позволяет выполнять измерения обогащения (по ²³⁵U) урановых материалов с точностью ~ 1 %.

4. Таким образом, приведенные результаты свидетельствуют о том, что имеющиеся в распоряжении ННЦ ХФТИ экспериментальное оборудование и средства математической обработки позволяют измерять неразрушающим методом обогащение урановых образцов с точностью не хуже 2%, что удовлетворяет требованиям ГКЯРУ в области создания систем измерений ядерных материалов на предприятиях Украины.

Работа выполнена при поддержке Научнотехнического центра Украины, проект Р-233А.

ЛИТЕРАТУРА

1. Д. Райлли, Н. Энсслин, Х. Смит, С. Крайнер. Пассивный неразрушающий анализ ядерных материалов. М.: «Бином», 2000, 703 с.

2. Держатомрегулювання України [Электрон. ресурс] / ГКЯРУ. Способ доступа: URL: http://zakon.rada.gov.ua/. Загл. с экрана.

3. С. Гуардини, П. Скиллебек, Б. Рязанов и др. Изготовление стандартных образцов для методов неразрушающего контроля для учебнометодического центра по учету и контролю // Труды Международной конференции по учету и контролю ядерных материалов МРС&А-2000. Обнинск (Россия), 2000, с. 3.58-3.69.

4. Ю.А. Воробьев. Гамма-спектрометрический анализ в контроле и учете ядерных материалов // Вопросы атомной науки и техники. Серия «Ядерное приборостроение». 2000, в. 1(18), с. 33-39.

5. R. Gunnink, W.D. Ruhter, P. Miller, J. Goerten, M. Swinhoe, et al. *MGAU: A New Analysis Code for Measuring U-235 Enrichments in Arbitrary Samples.* UCRL-JC-114713, LLNL, Livermore, USA, 1994.

6. D.T. Vo. Uranium Isotopic Analysis with the FRAM Isotopic code / LA 13580, LANL, Los Alamos, USA, 1999.

7. A.N. Berlizov, V.V. Tryshyn. Study of the MGAU applicability to accurate isotopic characterization of uranium samples // Proceeding of the Symposium on International Safeguards: Verification and Nuclear Material Security, 29 Oct. – 1 Nov., 2001, IAEA, Vienna, Austria.

Статья поступила в редакцию 23.04.2009 г.

ВИЗНАЧЕННЯ ЗБАГАЧЕННЯ УРАНОВИХ МАТЕРІАЛІВ ГАМА-СПЕКТРОМЕТРІЧНИМИ МЕТОДАМИ

Д.В. Кутній, Ю.М. Телегін, М.П. Одейчук, В.О. Михайлов, В.Ю. Товканец

Досліджувалася сумарна помилка визначення величини збагачення методами гама-спектрометрії з використанням комерційно доступних програм аналізу гама-спектрів уранових зразків MGAU (LLNL, CШA) і FRAM (LANL, США). При проведенні досліджень використовувалися уранові зразки із збагаченням 0,71; 4,46 і 20,1% по 235 U. Як детектори гама-випромінювання використовувалися детектори на основі германію високої чистоти: коаксіальний детектор (серії GC) і планарний низькоенергетичний детектор (серії LEGe). Показано, що експериментальне обладнання, що є у розпорядженні ННЦ ХФТІ, і засоби математичної обробки дозволяють вимірювати неруйнуючим методом збагачення уранових зразків з точністю не гірше 2%.

DETERMINATION OF URANIUM ENRICHMENT BY USING GAMMA-SPECTROMETRIC METHODS

D.V. Kutniy, Yu.N. Telegin, N.P. Odeychuk, V.A. Mikhaylov, V.E. Tovkanets

By using commercial analysis programs MGAU (LLNL, USA) and FRAM (LANL, USA) the summary error of gamma-spectrometric uranium enrichment measurements was investigated. Uranium samples with enrichments of 0,71; 4,46 and 20,1 % were measured. The coaxial high purity germanium detector (type GC) and the planar germanium detector (type LEGe) were used as gamma-radiation detectors. It was shown that experimental equipment and mathematical software available in NSC KIPT allow us to measure uranium enrichment by nondestructive method with accuracy of not worse than 2%.