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Theoretical investigation of influence of radial component of plasma wakefield on phase dynamics of the bunches has

been performed. The wakefield is excited in plasma by long sequence of the relativistic electron bunches. It has been

shown that at certain conditions this radial wakefield leads to more quick shift of the bunches, in comparison with

shift by longitudinal wakefield, from decelerating phases into accelerating phases. This shift leads to change of a sign

of an energy exchange of electron with a wave and to plasma wakefield amplitude saturation.

PACS: 29.17.+w; 41.75.1Lx

1. INTRODUCTION

Recently impressing results on electron acceleration
by strong fields (up to 100GeV /m), excited in plasma
by the driver, have been achieved. These drivers are
a powerful short laser pulse (10*®> W of femtosecond
duration) [1] or a short electron bunch with a large
charge (more than 10! electrons in a bunch of length
10...20 pm) [2]. The alternative approach to such
method is studied theoretically and experimentally
in NSC KIPT. This approach is called wakefield. It
is actually modification of charged particle accelera-
tion by fields of the space charge, excited in plasma
by non compensated electron bunch, proposed by
Ya.B.Fainberg [3]. In this approach the long sequence
of electron bunches (up to 6-103 for a macro-pulse of
duration 2 us) is used instead of a single bunch with
a large charge. The sequence is produced by the lin-
ear conventional electron resonance accelerator. The
wakefield is excited in plasma. If frequency of bunch
repetition coincides with frequency of wakefield the
wakefields of the separate bunches are added coher-
ently. The net wakefield should be equal to a field, ex-
cited by the equivalent bunch of a large charge, more
than on 3 orders exceeding a charge of one bunch
of the sequence. l.e. the equivalent intensity of the
driver, comparable to a bunch on SLAC [2], can be
achieved.

However, as follows from experimental results [4],
not all bunches of sequence participate in coherent
excitation. The mechanisms, restricting growth of
wakefield amplitude, are following. The first mecha-
nism is determined by an energy dissipation of an ex-
cited wave (a Q-factor in a resonator concept). This
mechanism leads to saturation of wakefield amplitude
when the dissipation is compared to a wave excitation
by sequence of bunches. The second mechanism of
saturation of wakefield amplitude is related to a wave

nonlinearity - change of its phase velocity and detun-
ing of frequency of bunch repetition and wave fre-
quency, i.e. destroying of Cerenkov resonance. The
third mechanism consists in bunch trapping by an
excited wave and stopping on the average an energy
exchange of bunches with a wave.

As it is difficult in experiment to specify mech-
anisms for determination of the main contribution
of one of them, the numerical simulation of plasma
wakefield excitation by long sequence of electron
bunches has been performed [5]. In this numerical
simulation the wakefield dissipation is excluded, and
other mechanisms were subject for interpretation.

In this paper the new mechanism of saturation
is considered. This mechanism is related to influ-
ence of radial electrical wakefield on phase dynam-
ics of bunches. The radial wakefield leads to bunch
shift from decelerating phases to accelerating phases,
hence to change of a sign of an energy exchange of
bunches with a wave.

2. PROBLEM FORMULATION

For electrons with the relativistic factor > 1
the phase shift relative to excited wakefield
dp = d(wt — k.z) = (w— k,v,)dt (w, k. are the fre-
quency and longitudinal wave number, v, is the elec-
tron velocity) by longitudinal electrical field E, is dif-
ficult (the longitudinal velocity v, changes small) be-
cause the longitudinal electron mass m, = mgy? is
large (mg is rest mass of electron). This allows to
form accelerating structure of the linear resonance
accelerators homogeneous (vpn, = w/k, = v,). Since
transversal electron mass m, = mp7y (in this direc-
tion the electron is ”easy” in comparison to the lon-
gitudinal direction, where it is "heavy”) the electron
can be accelerated by transversal electric field E, to
essential velocity v, . As velocity of the relativistic
electron v = (v2 +v2)1/2 ~ ¢, the growth v, means
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corresponding decrease of v, and corresponding ap-
preciable shift of the longitudinal phase ¢, caused by
transversal electrical field E,. It can lead to the situa-
tion when after N* bunches, passing through plasma,
the further bunches of sequence occur in an acceler-
ating phase of an excited wave. Consequently ampli-
tude growth of wakefield saturates.

Similar feature of two-dimensional dynamics of a
moving relativistic electron under the acting of con-
stant transversal field E, was investigated in [6].
It was shown that the relativistic electron unlike
the nonrelativistic case moves instead of a parabola
x = z?eFE /2mv} along more abrupt catenary line
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Here W is the kinetic energy, pg is the initial mo-
mentum, directed along z. In [6] however the reason
of such change of the relativistic electron trajectory
is not discussed. It is easy to be convinced that it

is caused by that for lack of longitudinal force the
longitudinal momentum is conserved

(1)

Py = MYV, = Pro = const . (2)
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The relativistic factor v = (1 + mic;) in-
creases due to increase of the transversal momentum

accordingly to
— =ekE, . 3
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As a result the longitudinal velocity decreases
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mo7y

(4)

Vy =

It leads to that unlike the nonrelativistic case for
which v, = const, the relativistic electron trajecto-
ries have more abrupt view.

In the presence of E, the electron motion on the
longitudinal phase under the acting of transversal
electric field E; can be more essential for large -,
than under the effect of longitudinal electrical field
E.. For determination of threshold on v of more
effective action of the transversal electrical field in
comparison with longitudinal one, the solution of an
exact problem on an electron phase dynamics in a
two-dimensional electrical field is necessary.

3. PHASE DYNAMICS OF THE
ELECTRON BUNCH IN THE PLASMA
WAKEFIELD

As it has been shown in [7] an electron bunch, moving
in plasma, excites wake in the form of a plasma wave

fields Egl) and Eﬁl), which is potential one without

magnetic component Hg = 0
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Here w), is the plasma frequency, o, = ct; is the

bunch length, o, is the bunch radius, j; is the beam
current density. Function P,(n) monotonously de-
creases, and function P.(n) has a maximum in the
region of bunch boundary 7 ~ n; [7]. In the case of a
thin bunch 7, < 1 in the region n < 1 the radial elec-
trical field exceeds the longitudinal field. The bunch
of the large transversal dimension 7, > 1 excites pref-
erentially longitudinal electrical field P,(n) > P.(n),
n < 11[7].

The exciting bunch (driver) occurs in the plasma
wakefield, excited by this bunch and by all previous
bunches of sequence

N N

These wakefields and bunch dynamics in them have
been calculated with hybrid 2.5D code LCODE [5].
The longitudinal momenta of 500 bunches as they
pass the middle of the plasma (z = 50cm) are shown
in Fig. 1 [5]. The amplitude of the on-axis longi-

(6)

tudinal electric field as a function of the coordinate
along the plasma and the number of bunches [5] is
shown in Fig. 2. It is seen that after passing of about
300 bunches wakefield saturates.

100. ..

Fig.1. Longitudinal momenta of 500 bunches as
they pass the middle of the plasma (z=50 c¢m) [5]

The longitudinal and radial electron dynamics of

bunches in the plasma wakefield is described by the
equation of motion [6]

dv e

7_, e, f 1/2
dt m c?
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The equations for longitudinal and radial velocities
of electrons have the views:

dv v e
z = EZ_ET’ 2L P
dt [ K c]mv?’
dv, Uy, €
= |[E,.—E,—|—. 9
o [ C]m7 (9)

At the condition

%WQE, > E, (10)

the phase shift of bunch electrons is determined
mainly by the radial field E,

dv, e vy

=——F,. 11
dt my ¢ (11)
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Fig.2. The amplitude of the on-azis electric field as
a function of the coordinate along the plasma and
the number of bunches [5]

This main influence of transversal field E, is the re-

sult of large longitudinal mass m. = mgYy> of the
relativistic electron and its small transversal mass
mi = mo7y.

The ratio o« = E,./E, depends on the bunch geom-
etry [7] and for experimental parameters [4] o ~ 1.
Taking into account o ~ 1, one can derive from (10)
the condition of prevailing action of E, on the elec-
tron shift along the longitudinal phase in the experi-
ment [4]:

Uy 1
s = 12
rs (12)
or
2
W
B, L > — 2 (13)
v 7

Here L is the system length. This inequality is
performed easily for the relativistic electrons.

It is necessary to note that for vacuum accelera-
tors longitudinal and radial dynamics of bunch elec-
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trons is described by the equations

d z 2 z T
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From (14) two conclusions follow. First, because
w
Hy=E,— | 15
o o (15)
in (14) we have (v, F,/c — Hy) =0,
dv, e
— B, 16
dt moe (16)

Hence transversal fields do not act on longitudinal
electron dynamics.

Second, from (14), (15) it follows in approxima-
tion v, K ¢, v, ~ ¢

dv, e

=F,——. 17
dt mo§ (17)
From (16), (17) it follows that the dependence of
longitudinal and radial motions is of the same order

on vo-

4 NUMBER OF BUNCHES OF
COHERENTLY EXCITING WAKEFIELD

One can derive from (11) and second equation (9)
in approximation v, << ¢ that the longitudinal the
longitudinal phase shift A¢ = 7, caused by wakefield
FE,., is achieved at

L +
vz rEr
A = k/ dt’/ at" st — o (18)
0 0 mryc

where v, = fot dt’ % For coherent case (coincidence
of plasma frequency and bunch repetition frequency)

the total field according (6) is equal
E,=NEW . (19)

Substituting (19) in (18) one can derive number of
bunches, in which wakefield bunch shifts on longitu-
dinal phase on 7

N* 6 \ /2 mryc?
a Lk, eLE,(_l) ’

The wakefield amplitude from single bunch in exper-
iments [4] is equal

(20)

41,
1) _ 0 -
EM = T = 0.3keV/em. (21)

Close value of Eﬁl) has been observed in numerical

simulation [5] and follows from analytical calculation.
From (20), (21) the number of coherent bunches for

v=>5, L =>50cm,
N*~130 (22)

approximately coincides with numerical simulation

[5].
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Wakefield, excited in plasma by a long sequence of the
relativistic electron bunches, has been considered. It
has been shown that at plasma wakefield acceleration
electron phase dynamics can be determined mainly

by radial electrical wakefield. The radial wakefield
can force shift of bunches from decelerating phases
into accelerating phases. This shift changes a sign of 5.
an energy exchange of bunches with a wave and leads

to saturation of its amplitude growth.
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O ®A30BOI JUHAMUKE PEJIATUBUCTCKUX SJIEKTPOHHBIX CTYCTKOB IIPU
BO3BY2K/JIEHNN KNJIBBATEPHOI BOJIHBI B IIJTA3SME

Hn.H. Onuwenxo, B.1. Macnaos

IIpoBesero TeopeTnvIecKoe UCC/IeIOBaHNE BIAUSHIAS PATUATHLHON KOMIIOHEHTBI TI0JIs KUJILBATEPHON BOJTHBI Ha,
daz30By0 DMHAMUKY CryCTKOB. KujabBarepHast BOJHA BO30YKIAETCsl B ILIa3Me JJIMHHON ITOC/IeI0BATEIbHO-
CTBIO PEJIITUBUCTCKUX 3JEKTPOHHBIX CI'YCTKOB. [loKa3aHO, 9TO Py ONpeIeIeHHBIX YCIOBUIX 3Ta PAUATbHAST
KOMIIOHEHTA IPUBOJIUT K 00Jiee OBICTPOMY CMEIIEHIIO CI'YCTKOB, Y€M IO/, AefiCTBIEM IIPOJOJIHHON KOMIIOHEH-
TBI, U3 TOPMO34IuX (a3 B ycKopsomue. Takoe cMellenrne MPUBOJIUT K CMEHe 3HAKa SHEProoOMeHa CI'YCTKOB
C BOJIHOM M K HACBIIEHUIO €€ aMILJIATY/IbI.

ITPO ®A30BY JVMHAMIKY PEJIATIBUCBKUX EJIJEKTPOHHUX 3I'YCTKIB ITPA
3BY/I2KEHHI KIJTbBATEPHOI XBUJII B IIJIA3MI

I.M. Onvwenxo, B.1. Macnaos

[IpoBeeno TeopeTuvHe JOCIIIKEHHS BIIUBY PaJiiaibHOI KOMIIOHEHTH II0JIsI KiJbBaTepHOI XBujii Ha (dHa30By
auHaMiky 3rycrkiB. KimpaTepna XBuiis 30y/I2KY€ThCd y IJIa3Mi JOBIOIO ITOCJIIOBHICTIO PEJISTHUBICTCHKIX
€JIEKTPOHHUX 3rycTKiB. [lokazamno, mo npu BU3HAYEHHX YMOBAX I paiajibHA KOMIIOHEHTA IIPUBOIUTH 10
GBI MBUAKOTO CCYBY 3TYCTKIB, MOPIBHSIHO 3 CCYBOM IIiJT TI€I0 TOB30BKHBOI KOMIIOHEHTH, i3 TAJIbMYIOUNX
da3 B npuckoproroui. Takuit ccyB mpu3BOAUTD JI0 3MiHM 3HAKY €HEProoOMiHy 3TYCTKIB 3 XBUJIEIO 1 0 HaCHU-
yeHHd 11 aMILTTy/Iu.
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