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The mechanism allowing to stabilize excited states of quantum systems is offered. The mechanism stabilization
is similar to quantum Zeno’s effect. The difference consists that under system is not made supervision. Instead of it
the system is periodically transferred in other quantum state. The speed, necessary for stabilization, of stabilizing

transferring is determined.
PACS: 03.65.Xp: 03.65.Yz

1. INTRODUCTION

The mechanism of stabilization of the excited states
offered in this work, is similar to quantum Zeno's effect
[1-2]. Therefore, to clarify the difference between of-
fered mechanism and Zeno's mechanism, we briefly
shall describe the contents of Zeno's effect. Let we have
a two-level quantum system. The zero level corresponds
to stationary, not excited state. The first level corre-
sponds to the excited state. Let now this system is under
action of resonant perturbation. We want to consider
how the crossing occurs from the zero level to the first
level and back. As known, such process is described by
the following simple system of the differential equa-
tions:

ihedy =V 4 i'h'AleloAOs €]

where 4; - complex amplitudes of wave functions. The

square of the module of these amplitudes defines the
probability of a presence of the quantum system at the
correspond power level. The matrix elements of the
interaction ¥, and V},, generally, depend both on struc-

ture of considered system, and from the characteristics
of perturbation.

We shall be consider them equal, constant and real.
Let at the initial moment of time the quantum system is
in the excited state. Then the solutions of the equations
(1) will be functions:

4, =cos(Q-1), 4,=sin(Q-1), ()

where QQ =V /% — Rabi frequency.

The physical contents of the solutions (2) is such: if
at the initial moment of time the system was in the ex-
cited state, then after the expiration of time 7 =27z/Q
she, with probability which is equal unit, will pass in the
basic, not excited state. Further the process will repeat,
but on each small interval of time this process has prob-
ability character.

Therefore, for further it is convenient all interval of
time T to divide on small time intervals At =T /n .

Now we shall enter a new element - measurement of
a state of investigated system. Let at the moment of time
At we somehow can estimate a state of our system.
Probability of that fact that she during the time A¢ will
pass from the excited state to basic state will be equal:

w(Af) =1-(Q-Ar)’. 3)

This formula already contains the important element
of quantum transitions. It consists in that that the veloc-

ity of transitions at small intervals of time is the less the
less are these intervals:
D e 2.0 (4)
This result in the theory of quantum Zeno's effect
named as nonexponential law of disintegration (see, for
example, [2]). After the expiration of the following in-
terval of time we again include process of measurement.
The probability of detection of the originally excited
system in the initial state will be defined by formula:

w2 A0 = (1- (@ At)2)2 . )

Such formula reflects the fact of independence of quan-
tum transitions in each of time intervals Az . Eventually,
after the large number of measurements the probability
of a presence of system in the excited state will be ex-
pressed by the formula:

w(n-At)= (1 —(Q-At)z)” . (6)

Let us take the logarithm from the left and right
parts of expression (6). In result we shall get that in lim-
it of a large number of measurements during time 7', the
probability of detection of system in its initial excited
state go to unit:

w(T) =exp(-QT* /n)—=—1. (7)

Thus, the process of supervision of the excited sys-
tem does not give for this system to  pass from the ini-
tial excited state in any other state. This fact makes the
contents of quantum Zeno's effect.

Now it is easy to explain the basic contents of work.
It consists in the following. We refuse from procedure
of measurement. However we assume, that near to the
excited energy level of system there is an additional
level (system becomes three-level). At that, on quantum
system except perturbation which can transfer system
from excited state in stationary, not excited state the
additional external low-frequency perturbation acts.
And, the frequency of this perturbation is resonant in
relation to transitions between the excited state and new
additional energy level. Besides we shall require that the
Rabi frequency of transitions between the excited state
and new state should be much greater, than return time
of transition of the excited system in the not excited
stationary state. Thus we shall show that the period of
these additional transitions, in which the excited system
is involved, will play a role of an interval of time be-
tween supervision in quantum Zeno's effect. The large
this frequency the smaller probability of transition the
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system from the excited state to the basic state (not ex-
cited stationary state).

2. STATEMENT OF A PROBLEM AND
BASIC EQUATIONS

Let's consider quantum system, which is described
by Hamiltonian:
H=H,+H(). (8)
Second addend in the right part describes perturbation.
The wave function of system (8) obeys to the Schrod-
inger equation, which solution we shall search as a row
of own functions of the not perturbed equation:

w(t)=Y A4,(t)-9, explio,t), ©9)
5 0P, _ 1
where @, =E /h; ih o =Hyp =E -¢,.

Let's substitute (9) in the Schrédinger equation and by
usual way we shall receive system of the connected eq-
uations for a finding of complex amplitudes 4, :

ih-4,=YU, () A4,, (10)

whereU,, = Iw; ~1f11(t)og0n -expli-t-(E,—E,)/h]-dq.
Let’s consider more simple case — the case of harmonic
perturbation:
ﬁl )= UO -exp(ioyt) + UI -exp(iot) .
Then the matrix elements of interaction will get the

following expression:
U,,=V,expli-t-[(E,—E,)/h+Ql},

V(k)nm = J.(on* .Uk '(ﬂmdq . (11)

Let’s consider of the dynamic three-level system:
(|0),]1),|2) ). We shall consider that frequency of ex-

ternal perturbation and the own meanings of energy of
these levels satisfy to such relations:
hew,=E, - E;;
h(e,+3)=E,-E, |8|<<a, ho,=E,~E, |6~ o (12)

These relations indicate that fact, that the frequency
@, of external perturbation is resonant for transitions

m=1,n=0, m=2,n=0

between zero and first levels, and the frequency @, is

resonant for transitions between the first and second
levels. Using these relations in system (10), it is possi-
ble to be limited by three equations:

i-h- Ay =Vy A +Vy,A -exp(i-5-1);
ih-A =V 4, +V,,A4,;
i-h- A, =V, A +V, A, -exp(—i-6-t).  (13)
The system of the equations (13) is that system,

which we shall analyze. The scheme of energy levels for
system (13) is represented in Fig.1.

3. DYNAMICS IN ABSENCE OF DETUNING

Let's consider, first of all, case, when detuning is
enough large and the terms in system of the equations
(13), which contain detuning, can be neglected. Besides
we shall consider that the matrix elements of direct and
return transitions are equal (V,, =V,,,V,, =V,,).Besides
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we shall consider that the matrix elements of transitions

between the first and second levels are much more, than
matrix elements of transitions between zero and first
levels (V,,/V,, = £ >>1). For further it is convenient to

introduce dimensionless timez =V, -¢/# .

2)
y I

hao

ho
[0)

y

Fig.1. Schema of energetic levels

Take into account these reasons the system of the
equations (13) becomes elementary simple:

A=A, ih=Arud, iL=pd.  (14)

Let at the initial moment of time (¢ =0) the consid-

ered quantum system is on first, excited level. Then, as

it is easy to see, the solution of system (14) will be func-
tions:

4, :;sin(lu't), A =cos(u-t), 4 =—isin(u-t).(15)
iu

From the solution (15) follows, that than there will
be the more parameter u, the there will be less prob-

ability, that the system from the excited state will pass
in not excited, stationary state. It is necessary to say a
little words about parameter u . Physically this parame-

ter defines the relation of number of quantum of low-
frequency perturbation which is responsible for transi-
tions between the first and second levels to number of
quantum of high-frequency perturbation which defines
transitions between the first and zero levels. Than there
will be more this ratio, the there will be less a probabil-
ity that the excited system will pass in the not excited
state. The account of influence of the terms containing
detuning can be made by numerical methods. Such
analysis was carried out. He has shown, that presences
even enough large detuning only little changes the re-
sult. And, the more size of parameter xz, the smaller

appears this influence. In a Fig.2 is given characteristic
dependence of module of amplitude A, from time, and

in Fig.3 — time dependence of module of amplitude 4,

when there is detuning, which was equal 0.1. Parameter
4 at this calculation was equal 100.

At the initial moment of time the system practically
was at the first excited level. The dependence of the
module of amplitude 4, from time does not differ prac-

tically from dependence submitted in a Fig.3. One can
see from these figures that initial probability to be sys-
tems in the not excited state (at a zero level) during the
time practically does not vary. She is very small and in
all cases inversely to a square of parameter g . Shall

note, that result is a little varies if parameter detuning to
increase up to 0.5.
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4. TRANSITIONS AT SPONTANEOUS
RADIATION

In the previous section we have considered quantum
system, the transitions between which levels were
caused by induced processes. The probabilities of in-
duced processes are considerably large than spontane-
ous, however spontaneous transitions can be occur on
all underlying energy levels. Such transitions, generally,
can be much. There is a question, as the process of sta-
bilization of the excited state will proceed in this case.
Whether he can be realized in this case? For the answer
to the put question we shall consider a concrete case of
stabilization excited state in synchrotron. At this we
shall use results stated in [3]. Thus, we shall consider
synchrotron radiation. In difference to consideration in
[3], we shall study not two-level system, but three-level
system. And, we shall assume, that on considered sys-
tem acts the external periodic perturbation causing in-
duce resonant transitions between two top levels (be-
tween the level one and the level two in Fig.1). The
transitions between level 1 and zero level occur sponta-
neously. System of the equations describing dynamics
of amplitudes of wave functions for such system can be
represented as:

ihd, =V* A exp(—i-AE-t/h),
ihd, =V Ayexp(i-AE -t/ h)+V,,- 4,,
ihA, =V, - A, .

V= J‘y/JUW/ld}x ,

(16)
V- :J.t//l*U’z//Od3x,

V., :‘[l//l*Ut//zd3x, operators U™ are defined in [3].

Here

Let's note only, that the operator U™ is proportional
to the operator of birth, and the operatorU~ is propor-
tional to the operator of destruction. The operator U de-
fines potential of external periodic perturbation.

We shall consider that the transitions between levels
one and two are caused by induce processes and occur
during the times which are considerably smaller times
of spontaneous transitions. In this case last two equa-
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tions can be considered independently from first equa-
tion. Besides, taking into account, that transitions be-
tween two top levels are induce, the matrix elements of
transitions upwards and downwards are equal to each
other (¥}, =V,,). In this case solution for amplitudes of
wave functions will look like:

A =cos(Q-t), A, =—isin(Q-1),
where Q =V, /h — Rabi frequency.

(17)

For the analysis of efficiency of spontaneous transi-
tions we should use the first equation of system (16). At
this in the usual theory of perturbation instead function
A, substitute a constant which is equal to unit. It corre-

sponds to that fact, that at the initial moment of time the
system is in the excited condition at the first level. On
logic of things, we should substitute in this equation the
solution (17). If we shall act thus, the result of stabiliza-
tion will be absent, only the spectra of spontaneous ra-
diation will slightly change. Actually it is necessary to
take into account that the investigated system at a level
one exists only during the limited intervals of time,
which size is order Az ~7/V,,. During each of these

intervals the system can spontancously pass to a zero
level. The probability of such transition will be propor-
tional to a square of size of this interval of time. Taking
into account, that each of such transitions is casual
process, and also that fact, that all these casual transi-
tions are independent from each other, we shall receive
result, which is described in introduction. Thus, it is
possible to expect, that when frequency of transitions
between the first and second levels (the Rabi frequency)
will be much greater, than return time of life of the ex-
cited state one, the process synchrotron radiation will be
put down. It is interesting to estimate size and character-
istics of external perturbation which can result in such
suppression. It is known (see, for example, [3]), that the
time of life of the excited state can be estimated by the
formula:
n-R

At=—"——,
ryme’ -y

(18)

where 7, — classical radius of electron; R — radius of

electron orbit in synchrotron.
If as an example we shall take R=100cm,

E=mc* -y =500MeV the time of life will be about

107 sec. Thus, for observation of suppression of syn-
chrotron radiation it is necessary, that the Rabi fre-
quency for transitions between the first and second lev-
els was much more, than 10° .

Let for definiteness she is equal10'. Then, those
conclusions of the theory, which was used by us above
(theory of perturbation) it is necessary, that the fre-
quency of perturbation was greater, than10'" . It is clear
also, that the large Rabi frequency and higher the fre-
quency perturbation the more appreciable will be effect
of suppression of synchrotron radiation.

CONCLUSIONS

Thus, it is possible to formulate the following rec-
ommendations for stabilization of the excited quantum
systems. First of all, it is necessary to know time of life
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CTABIWJIN3AIINASA BO3BYKJIEHHBIX COCTOSSHUI
B.A. Byy

[pemmaraercs MexaHU3M, TTO3BOJISIFOIINI CTA0MIN3NPOBATh BO30YKICHHBIC COCTOSHHS KBAHTOBBIX U KIIacCHYC-
CKUX cucTeM. MexaHu3M CTaOMIM3aliuy aHAJIOTHYCH KBaHTOBOMY 3 dekry 3eHoHa. OTiamdue 3aKiIf09aeTcs B TOM,
YTO HAJ CUCTEMOW HE MPOW3BOJUTCS HAOIIOJCHUS. BMECTO 3TOTO cMCTeMa MEePHOAMUYCCKH MTEPEBOAUTCS B IPYTroe
KBaHTOBOE cocTosiHue. OnpeneneHa HeoOXoaumast ISl CTa0MIIN3aK CKOPOCTh CTAOMIM3UPYIOIINX EPEX0/I0B.

CTABUIIBANLIA 3BYA)KEHUX CTAHIB
B.O. byy

[IporoHyeTbcst MeXaHi3M, SIKMH J03BOJIsIE CTaOLII3yBaTH 30Y/XKEHI CTaHM KBAHTOBUX Ta KJIACHYHHX CHUCTEM.
MexaHi3M crabinizalii aHaJIOTiYHUI 10 KBaHTOBOTO edekTy 3eHOHa. BiIMIHHICTD MOsTae y TOMy, 10 HaJ CHCTe-
MO0 HE HArJISIal0Th. 3aMiCTh I[bOTO CHCTEMa MEPiOJHYHO TIEPEBOAUTHCS B iHIIMN KBAaHTOBHiI cTaH. 3HaiIeHa He-
00ximHa UTst cTabimi3alii MBUIKICTh MEPEXOIIB, SIKi CTAOUTI3yIOTh CHCTEMY.
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