PHENOMENOLOGICAL DESCRIPTION OF NEUTRON YIELDS FROM ACTINIDE FISSION

A.I. Lengyel 1, O.O. Parlag 1, V.T. Maslyuk 1, Yu.V. Kibkalo 2
1 Institute of Electron Physics, 88000, Uzhhorod, Ukraine
2 Institute for Nuclear Research, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine

(Received November 4, 2010)

The phenomenological analysis of the neutron yields from the fission of 233U, 235U, 239Pu and 252Cf has been performed. The parameterization used allows the peculiarities of the 'sawtooth' curve of neutron multiplicity for light and heavy fragments to be described and predicted.

PACS: 24.75.+1, 25.85.-w, 25.85. Ec, 25.85. Ca

Studying characteristics of actinide nucleus fission products, such as mass and charge distribution, average number of prompt neutrons and excitation energies of fragments, is essential for understanding basic mechanisms of the fission process [1]. These characteristics are widely used in various application fields, e.g. in nuclear energy, non-destructive analysis, active and passive detection of special nuclear materials in context of their non-proliferation, etc. Information on primary fission fragments (with respect to neutron emission) is necessary for precise theoretical analysis of the experimental data. Direct measuring of primary fragments' properties relative to neutron emission is a complicated task. At the same time knowledge of neutron yield dependence on mass of fission fragments is important for understanding dynamics of the fission process. Variation of average neutron multiplicity pattern reflects change of different fission mode dynamic effects [2]-[4]. Number of emitted neutrons depends on mass number and charge of the nucleus, total excitation energy of fission fragments, redistribution of total excitation energy between light and heavy fragments and angular momenta of primary fission fragments. Therefore to give quantitative description of average multiplicity of fission neutrons [5]-[7] we need multi-parametric experimental data. According to Terrell calculating method system of the integral equations [8],[9].

\[\int_{0}^{A_{f}} Y(A) dA = \int_{0}^{A_{f}} y(A) dA + \frac{1}{2} \frac{dy}{dA} < \sigma^2(\nu_F, A) > + \ldots, \]

(1)
can be solved only on the basis of experimental data on total fission yields in the final state, \(y(A) \) - initial fragment yields with the mass number \(A \) before neutron emission; \(\sigma^2(\nu_F, A) \) - variation, \(\nu_F \) - total neutron yield.

As it was shown in [8] higher-order terms make small contribution. For example, contribution \(\frac{1}{2} \frac{dy}{dA} < \sigma^2(\nu_F(A)) > \) into \(\nu_F(A) \) is less than 0.1. Essence of Terrell calculating method (see Fig.5 [8]) is illustrated in Fig.1, where initial cumulative mass distributions of light and heavy fragments

\[S^L_y = \int_{0}^{A_L} y(A) dA, \]

\[S^H_y = \int_{A_F-A_L}^{A_F} y(A) dA \]

and final cumulative mass distributions of light and heavy fragments

\[S^L_Y = \int_{0}^{A_L} Y(A) dA, \]

\[S^H_Y = \int_{A_F-A_L}^{A_F} Y(A) dA \]

are plotted with circles and interpolated curves [10].

Values of total neutron yields \(F(A) \) are taken to be the absolute difference between point values and complementary function values, illustrated in Fig.1 by the horizontal line , so that

\[\nu_F(A) = \nu_L(A) + \nu_H(A), \]

(2)

where \(\nu_L \) and \(\nu_H \) are neutron yields from light and heavy fragments, respectively. To calculate \(\nu_{L,H} \) according to (1) it is necessary to set their optimal parameterization type in advance. On one hand, parameterization should contain as few free parameters as
possible; on the other hand, it should fully reflect expected local peculiarities. For this purpose we employ Wahl parameterization [10] by introducing function

$$R(A) = \nu_{L,H}(A)/\nu_F(A).$$

(3)

Generalized shape of R(A) function contains only 2 x 4 segments for both light and heavy fragments (dotted line on Fig.2), which is sufficient for qualitative description of existing experimental data on yields of neutrons emitted by fission fragments (see Fig.4.2.42 [10]).

Our recent analysis [11] of existing experimental data on neutron yields from fragments of 252Cf, 244Cm and 248Cm spontaneous fission [12] has shown that to consider dependence of fission neutron yields on mass more accurately, range of the fragment masses should be divided into more than 4 segments (solid broken line on Fig.2). To find consistent patterns in fission neutrons distribution depending on fragment mass, we have chosen smoothed and normalized empiric values of fission neutrons yields $\nu_{L,H}(A)$ for 233U(n,f), 235U(n,f), 239Pu(n,f) and 252Cf(s,f), obtained in [13], which are in reasonable agreement with the experimental data (see Fig.1 there). R(A) function for light and heavy fragments is parameterized as

$$R^L_i(A) = A^L_i + B^L_i(A-A_L).$$

(4)

$$R^H_i(A) = 1 - R^L_i(A_H),$$

(5)

where i - segment number, a^L_i, b^L_i - parameters. Value of A_L is determined from condition: $R(A_L) = 0.5$. We calculated $R(A)$ for 233U(n,f), 235U(n,f), 239Pu(n,f) and 252Cf(s,f) fission in accordance with (4) and (5), dividing the whole data range into 6 segments, as it is seen on Fig.2. Taking into account the following relations can substantially decrease number of the free parameters:

$$a_4 = 0.5; b_2 = 0; A_0 = (A_F - 4)/2;$$

(6)

$$a_1 + b_1(A_0 - A_L) = 0.5;$$

(7)

$$a_1 + b_1(A_1 - A_L) = a_3 + b_3(A_2 - A_L) = a_2;$$

(8)

$$a_{i+1} + b_{i+1}(A_{i+1} - A_L) = a_i + b_i(A_i - A_L).$$

(9)

Values of parameters a_i and b_i are determined from the calculated $R(A)$ function and relations (6) - (9). Results of the calculation are given on Fig. 3 and Table 1. Shape of $\nu_{L,H}(A)$ can be obtained from (3). As it is seen on Fig. 5, calculated values of fission neutron yields practically everywhere coincide with initial values, obtained by Wahl [13].

Empiric $R(A)$ function possesses number of characteristic features:

- $R(A) = 0.5$ in the point of symmetric fission, which is determined as $A_0 = (A_F - 4)/2$ [13], and also in the point A_L, determined by adjustment;

- maximal value of $R(A)$ function is restricted by 0.83 - 0.90 range;

- number of points at A_1A_2 plateau is 3 - 4 a.m.u.;

- position of A_1 point linearly depends on actinide mass (see Fig. 4.) and is determined from the condition of $R(A)$ function minimum value in the complementary point, corresponding to fission product mass $A_N = 129-130$ a.m.u.;

- value of A_L and parameters a_i, b_i also obey linear dependence in the probed range of actinide masses;

- A_0A_5 segment is almost constant and slightly varies within 39 - 41 a.m.u. range.

The performed calculation allows to estimate possible values of fission neutron yields from light and heavy fragments based on the known total average yields, which, in its turn, can be obtained only from mass distribution of fission fragments with help of modified Terrell method [8],[9].

Using graph on Fig.3 and the abovementioned regularities we can estimate neutron yields for 237Np(n, f) fission: $A_0 = 117; A_1 = 94; A_2 = 106; A_2 = 103; A_3 = 97; A_4 = 90; A_5 = 78; R_{max} = 0.9; R(A_5) = R(A_6) = 0.2; b_0 = 0.05$.

Anticipated behaviour of $R(A)$ function for 237Np(n, f) fission is presented by dotted curve on Fig.3.

In the present paper phenomenological analysis of neutron yields of 235U, 239U, 239Pu and 252Cf fission fragments is performed. Chosen parameterization and established regularities allow to describe observed changes of ‘sawtooth’ behaviour of fission neutron yields for light and heavy fission fragments.

Using the established regularities (solid curves on Fig.3) behaviour of $R(A)$ function for 237Np(n, f) fission is predicted (dotted curve on Fig.3). It is obvious from Fig.5 that we obtained good quantitative agreement with initial fission neutron yields for the whole range of the fragment masses.

This parameterization can be used for solving integral equations of type (1) to determine fission fragments’ yields before neutron emission.
Table 1. Parameters of $R(A)$ function for fission fragments of $^{233}\text{U}(n,f)$, $^{235}\text{U}(n,f)$, $^{239}\text{Pu}(n,f)$ and $^{252}\text{Cf}(s,f)$

<table>
<thead>
<tr>
<th>252Cf (s,f)</th>
<th>$A_L=105$</th>
<th>$\begin{array}{cccccc} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \ 2.4 & 0.9 & 0.51 & 0.50 & 0.47 & 0.20 \ b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \ -0.10 & 0.0 & 0.038 & 0.020 & 0.013 & 0.0 \ A_0 & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 \ 124 & 120 & 117 & 107 & 100 & 83 & 67 \end{array}$</th>
</tr>
</thead>
</table>

| 239Pu (n,f) | $A_L=95$ | $\begin{array}{cccccc} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\ 1.4 & 0.83 & 0.32 & 0.50 & 0.49 & 0.20 \\ b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \\ -0.04 & 0.0 & 0.050 & 0.006 & 0.016 & 0.0 \\ A_0 & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 \\ 118 & 110 & 105 & 100 & 94 & 88 & 80 \end{array}$ |

| 235U (n,f) | $A_L=92$ | $\begin{array}{cccccc} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\ 1.2 & 0.85 & 0.42 & 0.50 & 0.50 & 0.20 \\ b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \\ -0.03 & 0.0 & 0.050 & 0.020 & 0.021 & 0.0 \\ A_0 & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 \\ 124 & 104 & 101 & 97 & 86 & 77 & 65 \end{array}$ |

| 233U (n,f) | $A_L=90$ | $\begin{array}{cccccc} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\ 1.2 & 0.85 & 0.35 & 0.50 & 0.55 & 0.20 \\ b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \\ -0.03 & 0.0 & 0.050 & 0.020 & 0.025 & 0.0 \\ A_0 & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 \\ 115 & 102 & 99 & 85 & 840 & 76 & 65 \end{array}$ |

Fig. 1. Typical curves of cumulative mass yields S_{L}^A, S_{H}^A, S_{L}^S and S_{H}^S used to find neutron yields ν_L, ν_H depending on mass of fission fragments

Fig. 2. $R(A)$ - functions. Solid line represents our parameterisation; dotted curve is Wahl parameterisation [10]

Fig. 3. Calculated $R(A)$ for fission of a) $^{233}\text{U}(n,f)$, b) $^{235}\text{U}(n,f)$, c) $^{239}\text{Pu}(n,f)$, d) $^{252}\text{Cf}(s,f)$; and predicted $R(A)$ for $^{237}\text{Np}(n,f)$ fission reaction (dotted line)

Fig. 4. Behavior of the outermost points of $R(A)$ segments
Fission neutron yields $\nu_{L,H}(A)$ for light and heavy fragments: a) 233U(n,f), b) 235U(n,f), c) 239Pu(n,f), d) 252Cf(s,f); solid curve is the result of $\nu_{L,H}(A)$ calculation; circles are smoothed and normalized values of fission neutron yields [13].

References

ФЕНОМЕНОЛОГИЧЕСКОЕ ОПИСАНИЕ ВЫХОДОВ НЕЙТРОНОВ ДЕЛЕНИЯ АКТИНИДОВ

А.И. Ленгель, О.О. Парлай, В.Т. Маслюк, Ю.В. Кибкало

Проведен феноменологический анализ выходов нейтронов из осколков деления ^{233}U, ^{235}U, ^{239}Pu и ^{252}Cf. Выбранная параметризация и установленные закономерности позволяют описать и предсказать наблюдаемые изменения "пилообразного" поведения выхода нейтронов из легкого и тяжелого осколков деления ядер.

ФЕНОМЕНОЛОГИЧНИЙ ОПИС ВИХОДІВ НЕЙТРОНІВ ПОДІЛУ АКТИНІДІВ

А.І. Ленгель, О.О. Парлай, В.Т. Маслюк, Ю.В. Кибкало

Виконано феноменологічний аналіз виходів нейтронів з уламків поділу ^{233}U, ^{235}U, ^{239}Pu та ^{252}Cf. Вибрана параметризація та встановлені закономірності дозволяють описати та передбачити зміни "пилообразної" поведінки виходу нейтронів з легкого та важкого уламків поділу ядер, які спостерігаються.