INSTABILITY OF CYLINDRICAL RELATIVISTIC
ELECTRON BEAM, PROPAGATING IN PLASMA

V.A. Balakirev, V.I. Maslov, I.N. Onishchenko*
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received April 5, 2011)

The new mechanism of instability development of relativistic electron beam of finite radius in plasma has been

considered. Two-dimensional linear theory of this instability has been constructed. As a result of this theory the

frequencies of excited waves and growth rates of their excitation have been derived. 2.5-numerical simulation of

nonlinear stage of instability development and bunching of relativistic beam has been performed. The possibility

has been shown to use of this mechanism of instability for formation of train of short relativistic bunches, used in

wakefield method of electron acceleration.

PACS: 29.17.4w; 41.75.1Lx

1. INTRODUCTION

The possibility of modulation of relativistic electron
beam in plasma due to focusing/defocusing of its elec-
trons is shown in [1] by numerical simulation. In this
paper the two-dimensional linear theory of this insta-
bility is developed and its nonlinear stage is investi-
gated by numerical simulation.

2. THEORETICAL GROWTH RATE OF
INSTABILITY DEVELOPMENT OF
RELATIVISTIC BEAM IN PLASMA

We consider cylindrical REB of electron density ng(r)
which is propagated in infinite homogeneous plasma.
The external magnetic field is absent. The REB in-
teraction with plasma is described by the following
self-consistent equations, which include the Maxwell
equations
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and equations of REB’s electron motion

where w is the frequency of perturbation. As a result
we obtain the following linear equations
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where Q = w-kVp, n, V;,z are the perturbations of
density and components of electron beam velocity.
The equations (3) are equivalent to the following cou-
pled linear equations for components of an electrical
field
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where D is the electrical induction of isotropic
plasma. We linearise the equations (1), (2), having
presented dependence of all value perturbations on w? w2 w
ime and longitudinal coordi ‘ wt + ik e=1--F, €a=c——"5, ko=—.
time and longitudinal coordinate as exp(—iwt 4 ikz), w2 ~ow? c
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The equations (4) describe a linear stage of insta-
bility at any dependence of REB density on radius
(ng (r — o0) — 0).

We consider the simple case of homogeneous REB
with sharp border. Integrating the equations (4) in
infinitesimal vicinity of beam border r = a (a is the
REB radius), we derive boundary conditions for com-
ponents of an electrical field
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Outside the beam r > a the longitudinal component
of the electrical field satisfies to the equation
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where ¢? = k? — kZe. The solutions of the equations
(4) and (6) look like
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The jump of the electrical induction on the beam
border is caused by a surface charge. We use the
boundary conditions (5). As a result we derive the
following dispersion relation
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where p = qa, u = Aa.

It is necessary to note that €, takes into account
longitudinal phase focusing (modulation) of the elec-
tron beam by longitudinal component of the electri-
cal field. On the other hand ¢, takes into transver-
sal phase focusing, caused by radial displacement of
beam electrons by transversal components of the elec-
trical E, and magnetic H,, fields.

We consider the Langmuir wave w ~ w,, excitation
in conditions of Cerenkov resonance w ~ w, = kVj.
We look for the solution of the dispersion relation (8)
in kind w = kVp + 9§ (6 < wp). In this approximation
we have
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We consider that the following condition is correct
1
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Y0
It means, that we neglect the longitudinal phase fo-

cusing of the beam electrons. In this case the disper-
sion relation (8) becomes in the kind
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The diagram of the function F (1) = HJ}O(&)) is pre-
sented in Fig.1. The horizontal straight line in figure
corresponds to the right part of the equation (9), and
pn (n=1,2,3...) are the roots of the transcendental
equation (9). From this figure it is followed that the
electron beam forms a discrete set of radial modes.

Accordingly the dispersion relation becomes in the
kind
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In the limiting case of the electron beam of small
density
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the third member in the left part can be neglected.
As a result we obtain
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Fig.1. The diagram of the function F(u)

Accordingly for growth rate of beam — plasma insta-
bility we have
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The growth rate of the instability is inversely propor-
tional to 73/ % The phenomenon of the radial group-
ing of the beam electrons underlies instability.

We consider now the beam — plasma instability
concerning the excitation of the lowest radial mode
@ < 1. For this mode the dispersion relation (8)

becomes in the kind
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In conditions of Cerenkov synchronism of the beam
with the Langmuir wave w ~ w, =~ kV{ from the
equation we derive the growth rate of the instability
of the lowest radial mode
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It is necessary to note that the condition p < 1 is
correct when % < 1. The growth rate of the lowest
mode is inversely proportional to . It is explained
by that the radial electrical field E, is small in com-
parison with longitudinal one E, for this mode in the
region of the beam
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Therefore the radial phase grouping is not essential.
The instability is caused by beam modulation by lon-
gitudinal component of the electrical field.

3. NUMERICAL SIMULATION OF
INSTABILITY DEVELOPMENT OF
SMALL DENSITY RELATIVISTIC BEAM
IN PLASMA

We consider on time interval ¢ < 975 the interaction
of continuous electron beam with current 4.47A, ra-
dius 0.5¢m and 7y = 4 with plasma of length 170 cm.
¢ is normalized on w,, L. The beam density and of
plasma electron density are modulated as a result
of instability development. One can see (Fig.2) that
near the injection boundary, where focusing and de-
focusing has not sufficient time to develop, the field
is not excited. On the distance z = 90 cm from the
injection boundary the growth rate achieves its max-
imal value, equal 5 =~ 0.096, which is close to growth
rate v, =~ 0.090 of the linear theory.

The amplitude oscillations due to wave shift con-
cerning to the beam are observed.

One can estimate that after injection into the
plasma of the beam of length, approximately equal
to 398 wavelengths, the observed saturation am-
plitude is achieved. For this estimation the ideal
case is used, when defocused electrons already
have left area of interaction with the excited field.
Therefore in numerical simulation this number
should be more. Really, in numerical simulation
this number is about 500 wavelengths (see Fig.2).
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Fig.2. The amplitude of the excited on-axis longitu-
dinal electric field E, as a function of the coordinate
along the plasma and the time at beam — plasma
instability development. E is in MV /m, z is in m,
-1

t is normalized on w,,

4. CONCLUSIONS

The two-dimensional linear theory of instability
of the relativistic cylindrical electron beam of small
density and finite radius in plasma, caused by focus-
ing and defocusing of its electrons, is developed. The
nonlinear stage of this instability is investigated by
numerical simulation. Because of strong difference of
longitudinal and transversal weights the instability is
caused by radial dynamics of the beam electrons.
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HEYCTOMYNBOCTb IINJINHAPNYECKOI'O PEJISITUBNCTCKOI'O
SJIEKTPOHHOTI'O IIVUKA, ABN2KVYIIIETOCHA B IIJIASME

B.A. Baaaxupes, B.U. Macaos, U.H. Onuwerro

PaccmoTpen HOBBINT MeXaHI3M HEYCTOWYUBOCTU PAIAAIBLHO OTPAHMYEHHOIO PEIATUBUCTCKOTO JIEKTPOHHOIO
mydka B masme. [loctpoena nByMepHast JuHeiinas Teopus 3TOH HEYCTOWIMBOCTH, B pe3yabTaTe KOTOPOii Hail-
JIeHbI COOCTBEHHBIE ACTOTHI BO3OY2K/IA€MbIX BOJH M MHKPEMEHTHI UX HapacTanus. lIpoBesneno 2, 5-mepHoe
YUCJEHHOE MOJEJMPOBAHUE HEJIMHEHHON CTa iy pa3BUTHUS HEYCTOWYMBOCTU U CTEICHU I'DYHIIMPOBKU peJis-
TUBUCTCKOTO Iydka. [[okazana BOZMOXKHOCTD HCIIOIb30BAHUS ITONO MEXAHU3Ma HEYCTOWINBOCTH JJIs TOJIY-
YeHUdA II0CJIe/I0BATEIbHOCTH KOPOTKHUX PEIATHUBUCTCKUX CI'YCTKOB, MCIOJb3yeMOIl B cxeMe KHJIbBATEPHOT'O
METOJa YCKODEHUS.

HECTIMKICTD IIMJIITHAPUYHOI'O PEJIATUBICTCHKOI'O EJIEKTPOHHOTI'O
IIVUKA, dKNU PYXAETBHCHA B IIJTA3SMI

B.A. Baaaxipes, B.I. Macaos, I.M. Onuwenxo

PosrnsiryTiit HOBUil MexaHi3M HECTIHKOCTI pa/iiaabHO 0OMEKEHOTO PEIITUBICTCHKOTO €JIEKTPOHHOTO TTyYKa B
mia3mi. 30y/I0BAHO JIBOBUMIPHY JIHINHY TeOPito 1€l HeCTIKOCTI, B pe3y/IbraTi Kol 3Hali1eHl yacToTu 30y1-
KYBaHUX XBHUJIb Ta IHKpEMEHTHU iX 3pocTaHHs. lIpoBeneno 2,5-BUMipHE YHCIOBE MOJIETIOBAHHS HEJIHIHHOL
cTail pO3BUTKY HECTIHKOCTI Ta IpyIyBaHHS PEJSTUBICTCHKOrO mydka. [loka3zaHo MOXKJINBICTH BUKOPHUCTAH-
HS IIHOT'O MEXaHI3My HECTIHKOCTi JIJIT OTPUMAaHHS IOCJIIJIOBHOCTI KOPOTKUX PEJISITUBICTCHKHUX 3TYCTKIB, sIKa
BUKODPHUCTOBYETHCS B KiJIbBATEPHOMY METOJi IIPUCKOPEHHS.
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