SOFTWARE DEVELOPMENT TOOLS USING GPGPU
POTENTIALITIES

V.A. Dudnik;, V.I. Kudryavtsev, T.M. Sereda, S.A. Us, M.V. Shestakov
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received December 3, 2010)

The paper deals with potentialities of various up-to-date software development tools for making use of graphic
processor (GPU) parallel computing resources. Examples are given to illustrate the use of present-day software tools
for the development of applications and realization of algorithms for scientific-technical calculations performed by
GPGPU. The paper presents some classes of hard mathematical problems of scientific-technical calculations, for which
the GPGPU can be efficiently used. is possible. To reduce the time of calculation program development with the
use of GPGPU capabilities, various dedicated programming systems and problem-oriented subroutine libraries are
recommended. Performance parameters when solving the problems with and without the use of GPGPU potentialities

are compared.

PACS: 89.80.+h, 89.70.4-c, 01.10.Hx

1. INTRODUCTION

As far back as about five years, use of GPU parallel
computing resources for the development of appli-
cations and realization of algorithms for scientific-
technical calculations was quite an exotic technique.
To use the GPGPU special versions of graphic
drivers, rather specific operating system settings were
required, while only general programming aids pro-
vided by GPU manufacturing firms were available.
The CUDA architecture (NVIDIA product) [1,2,3]
has turned out to be especially successful for using
the GPU capacity to speed-up scientific-technical
calculations. This has given such a vigorous impetus
to the development of GPGPU tools that today their
capabilities are included as standard not only for
providing of all up-to-date graphic adapters but also
in the most popular operational systems Windows 7
and Linux. A wide use of GPGPU has stimulated the
development of software environment, which speeds
up the GPGPU program development and simpli-
fies an access to the GPU computational power from
scientific-technical calculation programs.

2. BASIC DIRECTIONS IN
ELABORATION OF SOFTWARE
DEVELOPMENT TOOLS

The basic directions in elaboration of software devel-
opment tools include:

e unification of access to GPU hardware and
standardization of GPGPU programming lan-
guages;

e automatic multisequencing compilers (applying
directives);

e creation of problem-oriented tools and libraries
for application development;

e enhancement of architecture and GPGPU hard-
ware and software platforms.

Now we consider these directions in greater detail.

3. UNIFICATION OF ACCESS TO GPU
HARDWARE AND STANDARDIZATION
OF GPGPU PROGRAMMING
LANGUAGES

At present the realization of Open CL interface [4,5] is
the most remarkable example of programming stan-
dardization and provision of hardware-independent
GPGPU software development tools. The develop-
ment of Open CL program interface that provides
hardware- and mostly software-independent access to
the GPGPU tools has made it possible to simplify
the creation of the programs taking advantage of the
GPGPU means, to extend considerably the range of
their use and also, to increase their lifetime. The
Open CL specification determines the program inter-
face for computer programs concerned with parallel
computations at various GPUs and central proces-
sors (CPU). The programming language based on
C99 standard and the application programming in-
terface (API) are incorporated into the Open CL pro-
gramming language. The Open CL interface provides
parallelism at the level of instructions and realizes the
GPGPU technique at the level of data. The Open CL
standard is an entirely open standard and its usage
is not liable to license fees. The fragment of program
given below demonstrates Open CL possibilities as for
standardization of the process of engaging the com-
putation fragments realization by GPGPU means in
the C++ program.

*Corresponding author. E-mail address: vladimir-1953@mail.ru

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N3. 99

Series: Nuclear Physics Investigations (55), p.99-103.

// Demo OpenCL application to compute a simple vector addition
#include <stdio.h> #include <stdlib.h> #include <CL/cl.h>
// OpenCL source code
const charx OpenCLSource[] = { "__kernel void VectorAdd(__global
int* c, __global int* a,__global int* b)",
ll{ll’
" // Index of the elements to add \n",
unsigned int n = get_global_id(0);",
// Sum the n’th element of vectors a and b and store in c \n",
" cln] = a[n] + blnl;",
ll}l’
};
// Some interesting data for the vectors
int InitialDatal[20] =
{37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17}; int
InitialData2[20] =
{35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15%};
// Number of elements in the vectors to be added
#define SIZE 2048

// Demo OpenCL application MAIN - PART 1
int main(int argc, char **argv) {
// Two integer source vectors in Host memory
int HostVector1[SIZE], HostVector2[SIZE];
// Initialize with some interesting repeating data
for(int ¢ = 0; ¢ < SIZE; c++)

{
HostVectori[c] = InitialDatall[c%20];
HostVector2[c] = InitialData2[c%20];
}

// Create a context to run OpenCL on our CUDA-enabled NVIDIA GPU
cl_context GPUContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU,
NULL, NULL, NULL);
// Get the list of GPU devices associated with this context
size_t ParmDataBytes; clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, O, NULL,
&ParmDataBytes) ;
cl_device_id* GPUDevices = (cl_device_id*)malloc(ParmDataBytes);
clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, ParmDataBytes, GPUDevices, NULL) ;
// Create a command-queue on the first GPU device
cl_command_queue GPUCommandQueue = clCreateCommandQueue(GPUContext,
GPUDevices[0], O, NULL);
// Allocate GPU memory for source vectors AND initialize from CPU memory
cl_mem GPUVectorl = clCreateBuffer (GPUContext, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVectori, NULL);
cl_mem GPUVector2 = clCreateBuffer (GPUContext, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVector2, NULL);
// Allocate output memory on GPU
cl_mem GPUOutputVector = clCreateBuffer (GPUContext, CL_MEM_WRITE_ONLY,
sizeof(int) * SIZE, NULL, NULL);

// Create OpenCL program with source code
cl_program OpenCLProgram = clCreateProgramWithSource(GPUContext, 7,
OpenCLSource, NULL, NULL);

// Build the program (OpenCL JIT compilation)

clBuildProgram(OpenCLProgram, O, NULL, NULL, NULL, NULL);
// Create a handle to the compiled OpenCL function (Kernel)
cl_kernel OpenCLVectorAdd = clCreateKernel (OpenCLProgram, "VectorAdd", NULL);
// In the next step we associate the GPU memory with the Kernel arguments
clSetKernelArg(OpenCLVectorAdd, 0, sizeof (cl_mem), (void*)&GPUQutputVector) ;
clSetKernelArg(OpenCLVectorAdd, 1, sizeof(cl_mem), (void*)&GPUVectorl);

100

clSetKernelArg(OpenCLVectorAdd, 2, sizeof (cl_mem), (void*)&GPUVector2);

// Launch the Kernel on the GPU
size_t WorkSize[1] = {SIZE};

// one dimensional Range

clEnqueueNDRangeKernel (GPUCommandQueue, OpenCLVectorAdd, 1, NULL,

WorkSize, NULL, O, NULL, NULL);

// Copy the output in GPU memory back to CPU memory

int HostOutputVector [SIZE];

clEnqueueReadBuffer (GPUCommandQueue, GPUOutputVector, CL_TRUE, O,
SIZE * sizeof (int), HostOutputVector, O, NULL, NULL);

// Cleanup
free(GPUDevices) ;
clReleaseKernel (OpenCLVectorAdd) ;

clReleaseProgram(OpenCLProgram) ;

clReleaseCommandQueue (GPUCommandQueue) ; clReleaseContext (GPUContext) ;

4. AUTOMATIC MULTISEQUENCING
COMPILERS

The compilers of this sort perform automatic analy-
sis of the program structure and the data used in
it, as well as they provide division of the comput-
ing process into separate parts intended for their
parallel processing by x32 or x84 CPU and GPU
tools, according to the directives included into the
program text. After that, the compiler generates
the program code that provides optimization of the
program cyclic areas execution by automating the
GPU using. The automatic multisequencing com-
piler FORTRAN PGI 2010 comprises PGI Accel-
erator FORTRAN and C99 compilers [6] thus pro-
viding support of the architecture system Intel and
AMD x64 NVIDIA CUDA operating under the con-
trol of the operational systems Linux, Mac OS X
and Windows. The programming system HMPP
may be mentioned as another example of automatic
multisequencing compiler realization. The system
HMPP comprises the preprocessor-analyzer of pro-
gram structure prototypes, which are the most opti-
mal for computational speedup with the help of hard-
ware. Then generation of the program code for the
GPU is executed in NVIDIA CUDA, AMD CAL/IL
or OpenCL languages, and the program code for
CPU Intel or AMD in C/C++ or Fortran languages.
(Fig.1) below shows the HMPP system structure.

nnolaiedselre e e e J

L o

HMPP Compiler

HMPP Preprocessor HMPP Target Generator

CIEartranSid Comniler
l C/Fortran Std. Compilel J

HMPP Runtime

Fig.1 HMPP system structure.

5.CREATION OF PROBLEM-ORIENTED
MEANS AND LIBRARIES FOR
APPLICATION DEVELOPMENT

The enhancement of GPGPU basic means of pro-
gramming and creation of adequate compilers fa-
cilitating application production stimulated the de-
velopment of numerous libraries for the problem-
oriented application development using the GPU
hardware possibilities for computation optimization.
The main advantage of the problem-oriented libraries
is that you need not be acquainted with the GPU ar-
chitecture features for realization of GPGPU-based
applications. CUBLAS and CUFFT, being the ear-
liest realizations of the mentioned libraries, have
appeared as early as in the structures of NVIDIA
and CUDA. The CUBLAS library was a variant of
BLAS (Basic Linear Algebra Subprograms) library,
and the CUFFT was a variant of FFT (Fast Fourier
Transform) library. Both were optimized for speed-
ing up the computations by NVIDIA CUDA tools.
CUBLAS was used for execution of vector and ma-
trix operations of single and double precision. The
FFT-based computations were done with the help of
CUFFT.

1000.000

—4—Lgamma(x)

~#-clLgamma(c2x+c3)+cd

/;—j

Vector Length

——x+y
100.000

clxtc2y+c3

= sin(x)

—o—exp(x)

10.000

Speedup

1.000

0.100

0.010

Fig.2 Speeding up some vector operations as
functions of vector dimension.

CPULib from Tech-X Corporation, one more rep-
resentative of this direction of development, was

101

intended for speeding up the operation of the ap-
plications created by the use of MATLAB and IDL
tools. The plot below illustrates the possibility of
speeding up some vector operations as functions of
vector dimension (Fig.2): It is obvious that an ap-
preciable acceleration is achieved only the vectors are
composed of 1000 and more elements.

6. ENHANCEMENT OF ARCHITECTURE
POSSIBILITIES AND BASIC GPGPU
HARDWARE AND SOFTWARE MEANS

As an example of enhancement of GPGPU possibili-
ties due to architecture improvement, new Fermi ar-
chitecture may be mentioned and which has been re-
alized in new GPUs from NVIDIA produced in 2010.
The most typical features of new architecture are:

e support of 512 computing kernels;

e support of operations with floating point of
double accuracy (precision);

e support of memory with error correction;

e NVIDIA Parallel Data Cache considerably
speeding up computations and execution of
other functions;

e NVIDIA Giga Thread ¢tm technology (various
branches of one and the same application may
be executed with GPU simultaneously);

e support of Nexus - completely integrated com-
puting media of application development by Mi-
crosoft Visual Studio.

It should be mentioned that in the nearest future
there will appear one more competitor of NVIDIA
Fermi. That is the Intel Larrabee architecture [7].
The base of Larrabee scalar block is the integer logic
of Intel Pentium processor. To which was added the
support of 64-bit commands of multithread perfor-
mance, preliminary access and some other functions.
The Larrabee vector block consists of 16 32-bit con-
veyors, each being able to perform both integer com-
mands and single-precision real-valued commands.
Double-accuracy real-valued commands may also be
executed but with some loss of productivity. Almost
all graphic traditional tasks (rasterization, interpola-
tion, alpha-mixing, etc.) are performed not by spe-
cialized logic but according to the program by vector
blocks. The only exception is the textural filtration
executed by hardware.

102

7. CONCLUSIONS.

It should be mentioned that the use of graphic accel-
erators as fast calculators continues to expand to var-
ious branches of science and engineering, where com-
puter capabilities of processing numerical data are
used. In this connection we observe rapid develop-
ment of programming aids of graphic accelerators as
massively parallel processors. Besides, the develop-
ment of architecture capabilities and basic hardware-
software means of GPUs is going on, and the enhance-
ment of their hardware-software resources is largely
aimed at of using them as GPGPU means.

References

1. A. Zubinsky. NVIDIA CUDA: unification sched-

ules and calculations. On May, 8, 2007.
(http://itc.ua/node/27969).

2. D. David Ljubke. Graphic proces-
sors - not only for Graphics.

(http://www.osp.ru/os/2007/02/4106864/).

3. D. Alexey V. Boreskoff. Bases CUDA
http://www.steps3d.narod.ru/tutorials/cuda-
tutorial.html/

4. Michael Wolfe: Understanding the
CUDA Data Parallel Threading Model
http://www.pgroup.com/lit /articles/insider/
v2nlab.htm

5. Federico Dal Castello. Advanced System Tech-
nology, STMicroelectronics, Italy Douglas
Miles. The Portland Group: Parallel Ran-

dom Number Generation Using OpenMP,
OpenCL and PGI Accelerator Directives.
http://www.pgroup.com/lit/articles/ in-
sider/v2n2a4.htm

6. Don Breazeal, Craig Toepfer: Tuning Ap-
plication Performance Using Hardware
Event Counters in the PGPROF Profiler

http://www.pgroup.com/lit /articles/insider/
v2n4a3.htm

7. Larry Seiler, Doug Carmean, FEric Spran-
gle, Tom Forsyth, Michael Abrash, Pradeep
Dubey, Stephen Junkins, @ Adam Lake,
Jeremy Sugerman, Robert Cavin, Roger
Espasa, Ed Grochowski, Toni Juan and
Pat Hanrahan: Larrabee: A Many-Core
x86 Architecture for Visual Computing
http://softwarecommunity.intel.com/UserFiles/
en-us/File/larrabee.manycore.pdf

CPEICTBA PASBPABOTKMU ITPOTI'PAMM, NCIIOJIB3YIOIIINX BO3MO2KHOCTHU
GPGPU

B.A. /Iyonux, B.U. Kydpasues, T.M. Cepeda, C.A. ¥Yc, M.B. Illecmaxos

[IpuBeneno onmncanme BO3MOXKHOCTEH PA3INIHBIX COBPEMEHHBIX ITPOIPAMMHBIX CPEJICTB Pa3pabOTKU I UC-
[I0JIb30BaHUs [aPaJIeJbHBIX BBIUUCIUTEJIbHBIX Bo3MOKHOCTEHl rpadudeckux uponeccopos (GPU). danbl
[PUMEPBI UCIOJb30BAHUST CYIECTBYIONUX IPOIPAMMHBIX CPEJICTB JIJIsi pa3pabOTKU MPUJIOKEHUN U peaJin-
3aliyl AJIFOPUTMOB HAYYHO-TEXHUIECKUX PACUYETOB, BBIOJIHSIEMbBIX CPEJICTBAMU I'PADUIECKUX IIPOIECCOPOB
(GPGPU). Boiie/iennbl HEKOTOPbIE KJIACCHl MATEMATUIECKU MHTEHCUBHBIX 33849 HAY YHO-TEXHUIECKUX Pacdé-
TOB, JJIst KOTOPBIX BO3MOKHO 3dderTuHOe npuMenenne GPGPU. Boiganbl pekoMeHammm mo COKPaIeHmo
BpeMeHU pa3pabOTKH MIPOrpaMM HAyIHO-TEXHIUIECKUX PACIETOB, ncnon3yoonmx BozMokuoctu GPGPU s
YCKOpeHHsT 00pabOTKHU JIAHHBIX, 32 CIET IPUMEHEHUsT PA3JINIHBIX CHEeNUAIN3NPOBAHHBIX CHCTEM IIPOTPAMMU-
poBaHus U MPOOJIEMHO-OPUEHTHPOBAHHBIX OMOJIMOTEK ToAIporpamMM. IToka3aHbl IpUMeEPhl CPABHEHUSI IIOKAa~
3aTesieil MPOM3BOIUTE/ILHOCTA IIPU peleHnu 31ux 3aja4d 6e3 npumenenusi GPU u ¢ ucnosip3oBanuem Bo3-
moxkuaocreit GPGPU.

3ACOBHA PO3POBKU ITPOTPAM, IITO BUKOPUCTOBYIOTH MO2KJINBOCTI
GPGPU

B.O. Iyonix, B.1. Kydpsasues, T.M. Cepeda, C.0. Yc, M.B. Illecmaxos

[IpuBeneno ommc MOXKJINBOCTEIH PI3HUX CydaCHHX MPOrPAMHUX 3aCO0iB PO3POOKU I BUKOPHCTaHHS Hapa-
JIQJIbHUX 00UNCIIIOBAIbHUX MOXKIMBOCTel rpadiunux nporecopis (GPU). Haseeni npukiiaayu BUKOPUCTAHHS
icHyIOYMX MPOrpaMHUX 3aCODIB JjIsT PO3POOKU JT0ATKIB 1 peastizaliii aJropuTMiB HayKOBO-TEXHIIHUX PO3pa-
XYHKIB, BUKOHYBaHUX 3acobamu rpadiunux nponecopis (GPGPU). Bugineni Jieski Kiacu MareMaTuvIHO iH-
TEHCHBHUX 33J1a9 HAYKOBO-TEXHITHUX PO3PAXyHKIB, IJisi AKNX MOxKJuBe edekruHe 3acrocyBanas GPGPU.
Bumani pekomenmariii mo CKOpOYEHHIO 9acy pO3pOOKM IIporpaM HAyKOBO-TEXHIYHUX PO3paxyHKIB, IO BU-
kopucToByiorh MoxkuBocTi GPGPU miist nmpuckopennsi 06pobKy JaHUX, 332 PaXyHOK 3aCTOCYBAHHS PI3HUX
CIIEITiaIi30BAHUX CUCTEM MPOTPaMyBaHHsS 1 MpobeMHO-OpienToBaHuX OibIioTek mimmporpam. ITokazami mpu-
KJIQJI¥ TOPiBHSIHHSI IIOKA3HUKIB MPOJIYKTHUBHOCTI IIPW BUPIIIeHHI nux 3aBjaHb 0e3 3acrocyBanuss GPU i 3
BukopucrtanasimM Moxkympocreit GPGPU.

103

