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Radiation emitted from high-energy planar channeled positrons in crystal is studied in the framework of quan-

tum electrodynamics to calculate the polarization characteristics of this radiation. Under our approach the general

expression is derived for the amplitude of polarized photon emission from arbitrarily polarized relativistic planar

channeled positrons in oriented crystal. The analytical expressions for the Stokes parameters of emitted photons are

derived, computer codes are developed and polarization characteristics are calculated for the frequencies that are

most interesting for the sources of polarized high-energy photons.

PACS: 61.85.+p; 41.60.-m

1. INTRODUCTION

For nuclear physics research one should possess pho-
ton beams of maximum intensity and maximum po-
larization in the range of the giant resonance at en-
ergies 10... 20 MeV. A restricted number of methods
of polarized photon generation, which exist today, do
not satisfy these requirements completely [1-4]. At
the same time it is known that in this range of energy
the intensity of radiation from 1... 2 GeV channeled
electrons is at maximum. Therefore, it is interesting
to study the polarization of radiation under channel-
ing and to estimate the possibility of the creation of
photon beams with high polarization degree using off-
axis collimation of photons under relativistic charged
particles channeling in crystals.

The aim of this work is to derive the formulae
for the Stokes parameters characterizing this radia-
tion. It is known that in the channeling regime the
particles momentum forms some small angle θ with
respect to the crystal plane or to the crystal axes,
which must be less than the critical Lindhard angle
θc. For angles θ > 5θc the agreement between the Co-
herent Bremsstrahlung theory and the experiments is
good. We consider a relativistic charged particle in-
cident onto a crystal approximately parallel to one of
the crystal planes. In the planar channeling case for
positively charged positrons, the channel is between
the crystal planes, while for negatively charged elec-
trons, the channel is provided by the crystal planes,
because channeled positrons are pushed away from
the atomic planes whereas channeled electrons are fo-
cused around the planes. This channel is the source of
a potential well in the direction transverse to the par-
ticle‘s motion, which gives rise to transversely bound
states for the particle. Transitions to lower-energy
states lead to the phenomenon known as Channel-

ing Radiation (CR). We obtain the formulae for the
corresponding Stokes parameters, which characterize
the linear and circular polarization of the CR from
arbitrary polarized particles as the function of the
set of variables (�p1, �ς,�k, �e). This set gives the angular
dependence of the polarization of the emitted radia-
tion. The calculation of the CR process is carried out
by using the rules of quantum electrodynamics. The
following analysis utilizes the methods used in [5-7]
and based on the approach which was developed in
[8,9].

2. WAVE FUNCTIONS, TRANSVERSE
POTENTIAL AND RADIATION

AMPLITUDE

A relativistic particle moving in a potential U(x) pe-
riodic in the x direction, which is normal to the chan-
neling planes, is described by the time-independent
Dirac equation. Partitioning the wave function Ψ(�r),
which is the solution of this equation, into large and
small components

Ψ(�r) =
(

ϕ(�r)
χ(�r)

)
(1)

leads to a Pauli-type equation for the large compo-
nents ϕ(�r). Since the potential is independent of y
and z, the solution of the last equation can be written
in the form:

ϕ(�r) =

√
E + m

2E
exp(i�p||�r||)f(x)w, (2)

where w∗w = 1.

This formulation allows us to transform a Pauli-
type equation into a one-dimensional, relativistic
Schrodinger equation for f(x) with a relativistic par-
ticle mass:
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(
− 1

2γm

d2

dx2
+ U(x)

)
fn(x) = εnfn(x), (3)

where γ = E/m is the relativistic factor and εn is
the transverse energy level of the particle. The ma-
trix element for CR is defined by

M21 =
∫

Ψ∗
2�α�e∗ exp(−i�k�r)Ψ1d�r =

=
∫

(ϕ∗
2 exp(−i�k�r)�σ�e∗χ1 + χ∗

2 exp(−i�k�r)�σ�e∗ϕ1)d�r,
(4)

where �α and �σ are the Dirac and Pauli matrices re-
spectively, �k is the photon momentum, �e is the pho-
ton polarization vector. Then, substituting the above
found wave function Ψ(�r) in the expression for the
matrix element, one finds for the absolute square of
the CR amplitude:

|M21|2 = Cw∗
1 �e1

(
�A∗ − i

[
�B∗�σ

])
w2

× w∗
2 �e2

∗
(

�A∗ + i
[
�B∗�σ

])
w1, (5)

where C = (2π)4 (E+m)(E′+m)
4EE′ δ2

(
�p‖ − �p′ − �k‖

)
, and

�A, �B, I1, I2 are given by the following expressions:

Ax = 2I2(1 +
ω

2E′ ), Ay = 0, Az = 2I1(1 +
ω

2E′ ),

Bx =
ω

E
(θ · I1 cosϕ − I2),

By =
ω

E′ θ · I1(1 +
ω

E
) sin ϕ, Bz =

ω

E′ ·
m

E
· I1,

I1 =
∫

exp(−ikxx) · f∗
2 (x) · f1(x)dx,

I2 = − i

E

∫
exp(−ikxx) · f∗

2 (x)
df1(x)

dx
dx. (6)

3. POLARIZATION CHARACTERISTICS

In our analysis we use the condition ω � E, which
is correct for this CR case. We also do not take into
account here the interaction between the particle‘s
spin and the potential of planes. For description of
polarization, we use here a set of vectors {�e1, �e2, �n},
which are used in [7] and can be expressed via vectors
�p1 = �p− �n(�n · �p), �p′1 = �p′ − �n(�n · �p′) (�p, �p′ are the
momentum of the particle before and after radiation
respectively, and �n is the direction in which photon
is emitted) in the next form:

�e1 =
�p1

|�p1| , �e2 =
�p1

2 �p1
′ − �p1

(
�p1 · �p1

′)
| �p1|

√
�p1

2 �p1
′2 − (

�p1 · �p1
′)2

. (7)

The set of vectors {�e1, �e2, �n} forms an orthogonal
basis and vector �e1 lies in the radiation plane (�k, �p).
These vectors are related with θ, ϕ (spherical coor-
dinates of the system in which the spectrum and an-
gular characteristics are calculated; here relativistic
particle moves along z direction and azimuthal angle
ϕ is counted out of x direction, which is normal to

the channeling planes, θ � 1 ) by the next relations:

�e1 = (− cosϕ, − sinϕ, θ ),
�e2 = ( sin ϕ, − cosϕ, 0 ), (8)
n̄ = ( θ cosϕ, θ sin ϕ, cos θ ).

An arbitrary vector �R=(Rx, Ry, Rz) in the coordi-
nate system {�e1, �e2, �n} is written in the form:

R1 ≈ −Rx cosϕ − Ry sin ϕ + Rzθ,

R2 ≈ Rx sin ϕ − Ry cosϕ, (9)
Rz ≈ Rxθ cosϕ + Ryθ sin ϕ + Rz.

Introducing the density matrices for relativistic par-
ticle and photon and after corresponding calculations
we find the next general expressions of the Stokes pa-
rameters for the outgoing photon:

ξ1 = (8/ΣLe)(1 + ω/E′)(θ · ReI1 · I∗2−
− |I2|2 cosϕ) · sin ϕ,

ξ2 = ς3 (8/ΣLe) (2ω/E′) (1 + 2ω/E′) 2θ×
× Re(I∗1 I2) cosϕ

− ς3 (8/ΣLe) (2ω/E′) (1 + 2ω/E′) |I1|2 θ2−
− ς3 (8/ΣLe) (2ω/E′) (1 + 2ω/E′) |I2|2 −
− ς3 (8/ΣLe)

(
ω2m2/E′2E2

)
|I1|2 − (10)

− ς2 (8/ΣLe) (2ωm/E′E)Re(I∗1 I2) sin ϕ−
− ς1 (8/ΣLe) (2ωm/E′E) |I1|2 θ+
+ ς1 (8/ΣLe) (2ωm/E′E)Re(I∗1 I2) cosϕ,

ξ3 = (4/ΣLe) (1 + 2ω/E′) |I1|2 θ2+

+ (4/ΣLe) (1 + 2ω/E′) |I1|2 cos 2ϕ−
− (4/ΣLe) (1 + 2ω/E′) 2θRe(I∗1 I2) cosϕ,

where E and E′ = E−ω are the energy of relativistic
particle before and after radiation, respectively, m is
the electron mass, ω is the energy of emitted photon,
ζ1, ζ2, ζ3 are the components of the unit spin vector �ς
of the initial particle given in the coordinate system
{�e1, �e2, �n}. A normalization factor ΣLe is determined
by the formula:

ΣLe = 4
(
1 + ω/E′ + ω2/2E′2

)
θ2 |I1|2 +

+4
(
1 + ω/E′ + ω2/2E′2

)
|I2|2 −

−8
(
1 + ω/E′ + ω2/2E′2

)
θRe(I1 × I∗2 ) cosϕ+

+
(
ω2m2/2E′2E2

)
|I1|2 .

(11)
We can obtain from the conservation laws of energy
and momentum next relation between the direction
of �k, the difference of transverse energies before and
after radiation, and radiation frequency:

θ2 =
2E(E − ω)(εn − εn′) − m2ω

Eω(E − ω cos2 ϕ)
. (12)

It may be shown, that in the cases of photons with
energy ω � E there is the following relation for inte-
grals I1 , I2:

I2 = I1

(
εn − εn′

kx
+

kx

2E

)
. (13)

131



Then, using (12), the last expression may be written
in the form:

I2 = I1

γ−2 + θ2(1 − ω2

E2 cos2 ϕ)
2θ(1 − ω/E) cosϕ

. (14)

This allows us to eliminate I1 , I2 from (11). Thus
in this case photon polarization is independent of the
planar-continuum potential. As in bremsstrahlung, it
is easy to see from (11) that circularly polarized CR
can arise only from a polarized particle and the circu-
lar polarization of the photon beam is proportional to
ω/E. In general, the circular polarization from lon-
gitudinally polarized particle is considerably greater
than from transversely polarized particle, exactly in
the same way as occur in the case of bremsstrahlung.
The linear polarization of CR is not dependent upon
the particle‘s spin and its degree is given by

P =
√

ξ2
1 + ξ2

3 . (15)

Now we can obtain the final analytical expressions
for the Stokes parameters and for the degree of linear
polarization. These formulae are rather complicated
and are not given here.

4. CONCLUSIONS
The results of the numerical calculations under these
formulae for E =10 GeV and ω =10 MeV are pre-
sented in Figs. 1 and 2. They show that the degree
of linear polarization of CR close to the maximum
P ≈ 1 in the greater part of observation angles and
the planar CR will be almost completely linearly
polarized in the direction normal to the channeling
plane. Thus using developed method one can find the
regions of angles where maximum linear polarization
is observed and under off-axis collimation one can
practically get photon beams with these characteris-
tics. The circular polarization under these conditions
is always to be a small of order ∼1%. These results
are in good agreement with the analysis of work [6].

Fig. 1. Surface plot of the function P (θ, ϕ) =√
ξ2
1 + ξ2

3 in the case of E = 10 GeV, ω = 10 MeV
for Si crystal < 110 >, T = 293 K

Fig. 2. Surface plot of the function ξ2 (θ, ϕ) , (ζ1 =
ζ2 = 0, ζ3 = 1) in the case of E = 10 GeV, ω =
10 MeV for Si crystal < 110 >, T = 293 K
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