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The problem of measurement of bremsstrahlung characteristics in the process of sharp scattering of relativistic

electron in the case when transverse distances responsible for radiation process have macroscopic size is considered.

It is shown that in this case the results of measurements substantially depend on the size of detector and its position

relatively to the scattering point. The problem of transition radiation by relativistic electron with nonequilibrium
own field which was formed in the result of sharp scattering is considered. It is shown that the state of electron with

nonequilibrium field manifests itself by suppression of transition radiation and by oscillation type of its characteristics

dependence on the distance between the plate on which the radiation occurs, and the scattering point.

PACS: 41.20.-q, 41.60.-m

1. INTRODUCTION

During the process of electron’s scattering the recon-
struction of the field around it occurs, which leads
to radiation of electromagnetic waves. For ultrarela-
tivistic particles the radiation process forms on dis-
tances along the particle’s initial velocity which con-
siderably exceed radiated wavelength. Such distances
are called coherence lengths of radiation process
(or longitudional radiation formation lengths)[1-3].
The same distances are responsible for rebuilding
of the initial field of the scattered particle while it
moves along the direction of scattering. Within these
lengths the field around the electron considerably dif-
fers from the coulomb one. The radiation process
is also described by characteristic transversal dis-
tances which are responsible for radiation formation.
Both longitudional and transversal radiation forma-
tion lengths can have macroscopic size not only in
the case of ultra high particle energies but for elec-
tron energies of several tens Mev in the millimeter
wavelength region as well. In the present paper we
show that under such conditions in the considered
case bremsstrahlung characteristics can substantially
depend on both the size of the used detector and its
position relatively to the scattering point. The ef-
fects in bremsstrahlung that occur in this case are
similar to the analogous effects in transition radia-
tion in prewave zone [4-7]. We also show that the
state of electron with nonequilibrium field substan-
tially manifests itself in the process of further transi-
tion radiation by such electron. In this case the effect
of transition radiation suppression as well as the oscil-

lation type of radiation characteristics dependence on
distance between the plate (on which the transition
radiation occurs) and the electron’s scattering point
takes place. The causes of such effects are discussed.

2. BREMSSTRAHLUNG

Let us consider the process of instant scattering of
relativistic electron to a large angle at which the par-
ticle’s velocity changes from the initial value v to the
final v’at the moment of time ¢ = 0. As it was shown
in [3] the retarded solution for the total field scalar
potential in the space after the scattering moment can
be presented in the following form (here and further
the speed of light ¢ is considered to equal unit):

p(r 1) = 0(r — )y (r,t) +0(t = r)pv (r,t), (1)

where ¢, and ¢ are the coulomb potentials of
the electrons which move uniformly straightforward
along the axes z and 2’ (see Figure). The Fourier-
expansion of (1) over the plane waves with wave vec-
tors k is:

dSk eikr %

e
<p(r, t) = WR@ 2

where k2 = ¢%> + k2, k. and g are respectively the
components of wave vector k along the z-axis and or-
thogonal to it(z-axis is chosen to be the direction of
the initial electron’s velocity v).
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The first item in square brackets in (2) corre-
sponds to the nonequilibrium field which the scat-
tered electron has already managed to rebuild around
itself by the moment of time ¢. This field vanishes in
the region which the signal about the scattering has
not yet reached, which is outside the sphere of ra-
dius R = t with the center in the scattering point
(f-sphere). Inside the sphere it coincides with equi-
librium coulomb field of the electron. As we can
see from (2), the main contribution to the integral
of the first item is made by k with the directions
nearly parallel to v/. Thus by the moment of time
t ~ 1/ko(1 — v’) (which in ultra relativastic case is
t ~ 2v%/kg, 7 is the particle’s lorentz-factor) after
the scattering the Fourier-harmonics of this part of
total field which have absolute values of wave vector
k < kg are still highly suppressed. The electron with
such field is known as the ‘half-bare’ electron [8].

Detsctor

The momentary scattering of relativistic electron to

a large angle in the point z =2’ =0

The second item in square brackets in (2) de-
scribes the field which as though ‘tears away’ from
the electron at the scattering moment. It is a packet
of free electromagnetic waves which moves in the di-
rection of the initial electron’s velocity v and grad-
ually transforms into bremsstrahlung. This field is
different from zero outside the #-sphere and vanishes
inside it. Now we will consider more closely this part
of the total field (2) in order to derive the observable
spectral-angular characteristics of bremsstrahlung,
which takes place in the considered process of elec-
tron scattering.

At first let us consider the total energy of radi-
ation of certain frequency w which traverses small
element of surface which is situated in the point with
radius-vector r = ( p,z), and seen at the solid an-
gle do from the scattering point (here p is the po-
lar coordinate in the plane orthogonal to the z-axis).
Such consideration corresponds to the measurement
by point detector situated in the point r = ( p, 2).

Making the variable substitution k., — k by

k., = \/k? — ¢? and denoting k = w, it is possible

to present the Fourier-expansion of the ‘torn-away’
field scalar potential in the following form:

[ / ! dq qu(qp)
7TU2 —00 0

p(r,t) = A(Z),

and p = | p|.

In (3) and (4) the square root y/w? — ¢? is con-
sidered to be a single-valued branch of the analytical
function which is equal to ‘\/ w? — q2’ for w > g and

— ‘\/w2 —q2’ for w < —q.

In ultra relativistic case (y > 1, v — ¢) the range
of ¢, which makes the main contribution to the inte-
gral (3) is ¢ < w/y < w and it is possible to expand
the square roots y/w? —¢? in (4) by the small fac-
tor q/w. Let us leave the items proportional to the
second power of ¢/w in the arguments of sinus and
cosinus while in the other parts of the expression (4)
neglect them. Moreover the integration over g can
be extended to the region 0 < ¢ < oo. This leads
to the following expression for the ‘torn-away’ field
potential in ultra relativistic case:

qu qp uu(z—t)—iqiz

/ / 26 ®)

In this case the ‘torn-away’ electric field can be
considered as transverse having only component F |
orthogonal to z-axis. Moreover, for v > 1 the ra-
diation is mainly concentrated in the directions in
the vicinity of the initial electron’s velocity v. For
such small angles between the radiation direction
and the z-axis we can present the expression for
bremsstrahlung spectral-angular density in the fol-
lowing form:

€ _ r*
dwdo ~ 472

‘EJ_(I‘,(U)‘Q, (6)
which is valid for arbitrary distances z from the scat-
tering point.

Using (5) we can derive the Fourier-component
of electric field orthogoal to the z-axis. Substitut-
ing it into (6) for spectral-angular distribution of
Bremsstrahlung we achieve:

2
de _ cez\?| (™ a*Nilap) -
dwdo ( T ) /0 dq w? - @

q + 242
For large distances from the scattering point,
namely in the wave zone of the radiation process
(z > 272%/w) the integral in (7) can be calculated
with the use of stationary phase method [9]. It leads
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to the well known expression for radiation distribu-
tion from the Bremsstrahlung theory [10]:

de e? 92 g

dwdo — 72 (92 4 4—2)?’ ®)
where 9 = p/z is the angle between the direction of
radiation and the z-axis. As we can see from (8) in
the wave zone the radiation is mainly concentrated
within the characteristic angles ¥ ~ 1/~.

In the prewave zone (2 < 2v%/w) of the radiation
process it is not possible to use the stationary phase
method for the analysis of radiation characteristics.
Here, making the substitutions ¢ = wx/v and p = 20,
we can present the integral (7) in the form:

e ewz |I |
dwdo — \ w7y e ’

9)

where

I :/0 daJy (wzy~tzd) exp (—i%ﬁ) ,

I, = / dzx w2 m?) exp (—iw—zm2> .

2241 22

In the case v > 1 the absolute value of the integral
I is neglectibly small comparing to the correspond-
ing value of I; and for spectral-angular density of
Bremsstrahlung in the pre-wave zone we obtain:

2 2
T () 0P = Sy (). (o)
dwdo m2y2 192 4

From (10) we can conclude that in the prewave zone
the radiation is mainly concentrated within the an-
gles ¥ ~ 1/4/wz, which exceed the characteristic an-
gles ¥ ~ 1/v of the wave zone. Therefore in the
prewave zone (z < 272/w) the point detector gives
broader angular distribution of radiation than in the
wave zone (z > 2v%/w). Moreover this distribution
depends on the frequency w of the radiated waves.

By the point detector we mean here the detector
of the smaller size §p than the transversal radiation
length of the process I ~ v/w which is the charac-
teristic transversal distance on which at the moment
of time ¢ = 0 the Fourier-harmonics of frequency w
are concentrated in the wave packet (5). Such detec-
tor registers the radiation of frequency w, which falls
on the small domain of space, where the detector is
situated.

The measurements however can be made by the
extended detector of the larger size than the char-
acteristic transversal length of the radiation process,
so that dp > lp. Such detector registers not only
the waves of frequency w which fall on the small el-
ement of surface with coordinates p and z, as the
point detector does, but all the electromagnetic waves
of frequency w which propagate in the direction of
wave vector k (Jk| = w). In order to calculate the
bremsstrahlung spectral-angular distribution, which
is registered by extensive detector, which is a plate of
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large size, we need to integrate the expression (7) over
the entire considered plate and express the obtained
result in the form of an integral over the directions
of wave vectors of radiated waves. The integrand at
that will be nothing else than the required distrib-
ution. In our case after performing the procedures
described above we can present the expression (7) in
the following form:

( e )2 / d279779'2y

- )
™S (934972
where ¥, = g¢/w is the angle between the direc-
tion of the wave vector k and the z-axis. Hence
the Bremsstrahlung spectral-angular distribution ob-
tained by the extended detector coincides with the
one (8) obtained by the point detector in the wave
zone. But unlike the case with point detector this
distribution does not depend on the distance from
the scattering point and is the same both in the wave
and the prewave zones.

The analogous effects concerning large transver-
sal radiation lengths take place as well for backward
transition radiation during the electron’s traverse of
thin metallic plate [4-7]. It is explained by the fact
that the structure of the fields which arise in this case
is analogous to the one which takes place at the mo-
mentary scattering of the electron to a large angle.
Indeed, solving the boundary problem for the total
electric field on the surface of the plate we can finally
derive the explicit expression for the scalar potential
of the field reflected from the plate, which gradually
transforms into backward transition radiation [11]:

p(rt) = lpv(r,t) —py(r, )] 0(r — 1),  (12)

where ¢y and ¢_ are the coulomb potentials of the
electron and its image inside the plate. Comparing
(12) with (1) we can see that in ultra relativistic case
after the electron’s traverse of the plate the structure
of the field on the left of the plate (we assume that
electron traverses the plate from left to right) is anal-
ogous, but not identical, to the structure of the field
which is ‘torn away’ from the electron at its scatter-
ing. Such structural similarity of the fields explains
the existence of analogous effects in bremsstrahlung
and transition radiation in the considered cases.

de

o (11)

3. TRANSITION RADIATION

Let us consider the backward Transition radiation
which occurs when the scattered electron normally
traverses thin ideally conducting plate situated in the
direction of scattering in the plane 2z’ = z|) (see Fig-

ure). The Fourier-expansion of the field around the
scattered electron
d?)k zk(rfv’t) ikr—ikt
( R - c 9
k— kv’ k — kv’
(13)

consists of two parts, the first of which describes the
equilibrium coulomb field of the electron which moves



with the velocity v/ along the direction of scatter-
ing, while the second part is the nonequilibrium field,
which is structurally equal to the ‘torn away’ field (it
is equal to equilibrium coulomb field outside the 8-
sphere and vanishes inside it). Hence, the second part
of the field (13) can be presented in the form (3) with
a mere substitution v — v’. The first part of the field
(13) can be presented in the analogous form by mak-
ing the substitution k, — k from k = \/k2 + ¢% and
denoting k,v’ = w. From the expression for scalar po-
tential obtained by the considered transformations we
can derive the expression for the Fourier-component
of the electric field perpendicular to z’-axis, which in
ultra relativistic case is:
g2 Jl(qp)

(oo} . , oo
E|(r,w) = 26/ dwelv_//
—00 0 7+ /2 72

x l1 i (7_2“%,2)] .

From (14) it follows that the rebuilding of the field
around the electron occurs in such way that each
Fourier harmonic of frequency wqg totally reconstructs
and becomes the harmonic of equilibrium coulomb
field on the distance from the scattering point which
coincides with radiation formation length for this wy
(|2'| ~ 272 /wo). It is possible to place the plate quite
close to the scattering point so that at the moment of
electron’s traverse of the plate the Fourier-harmonics
of certain frequencies w < wpy will have not yet re-
constructed. In other words it is possible to place
the plate in the prewave zone for these frequencies.
In this case the incident electron will be ‘half-bare’
and its transition radiation should differ from such
radiation by electron with equilibrium field.

The total field of the electron-plate system con-
sists of the field of ‘half-bare’ electron E| and the
field ch_ of currents induced on the surface of the
plate. Applying the boundary condition for electric
field on the surface of the plate £ (2’ = 0) —|—E{ (2 =
0) = 0, we can find the expression for the Fourier-
harmonic of the field of induced surface currents:

(14)

iwR 9
R 9% +~72

(&

Ef (r,w) = 2e—— S [F(r,w)—1],  (15)

where

. 197 72— 24))?
(r,w) - ; p,2 +’772(Z/ _ 26)2

< 1 12
X exp il + p
2 vy (=) =220 | |

R is the distance between the point of the electron’s
traverse of the plate and the point where the field is
considered, R ~ z) — 2/ + p/*/ [2 (z — 2] and 9 is
counted from the direction of —v’. This field gradu-
ally transforms into backward transition radiation.

The expression (15) can be simplified for —z' >

292 /w. In this case:
{16 2+2 (1+'Y2192) 1}

(16)

iwR 9
R 9% +~~

(&

Ef(r w) =2e——

and using (6) for spectral-angular density of transi-
tion radiation by ‘half-bare’ electron we obtain:

de e? 2 w2}
= 2 7 9J1—cos | =20 (~"2492 )
dwdo 7% (92+~72)2 { COb{ 2 (49 )}}
(17)

The expression (17) differs from the corresponding
expression for transition radiation by electron with
equilibrium field by the interference factor inside the
braces and the coefficient two in front of them. As
we can see from (17), when the distance z{, between
the scattering point and the plate is much less than
the radiation formation length (Ic ~ 2v%/w) the ra-
diation is highly suppressed. For larger values of z(,
the dependence of the radiation intensity on z{ has
the oscillation type with the period of the order of
the formation length:

A =471 /w(9* +~772).

Due to the nonzero frequency resolution Aw of the de-
tector it is possible to observe such oscillations only
in the area limited by the condition

2y < 2m/Aw (92 +~72).

(18)

(19)

Also due to the nonzero size and, therefore, angu-
lar resolution of the detector the oscillations can be
observed only inside the region

2 < T /wIAD. (20)

For large distances z; >> A the considered oscilla-
tions disappear and the detector registers an inco-
herent sum of contributions to transition radiation
by electron’s own field reflected from the plate and
by the field of bremsstrahlung in this direction.

4. CONCLUSIONS

In the present paper the process of momentary scat-
tering of relativistic electron to a large angle is consid-
ered. It is shown that the observable spectral-angular
characteristics of bremsstrahlung which takes place in
this process substantially depend on the position of
the used detector relatively to the scattering point if
the size of the detector is smaller than the charac-
teristic transversal distance of the radiation process
lp ~ v/w. Namely in the prewave zone z < ¢ such
detector gives broader angular distribution than in
the wave zone z > ¢ and such distribution depends
on the frequency of the registered waves in contrast to
the case of measurement in the wave zone. If the size
of the used detector exceeds [ the results obtained by
such detector do not depend on its position and coin-
cide with the results obtained by the point detector in
the wave zone. In the present paper it is also shown
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SP®OEKT IIPEABOJIHOBO 30HBI B IIEPEXO/JIHOM 11 TOPMO3HOM
N3JIYYHEHNN PEJIATNBNCTCKOI'O 9JIEKTPOHA

H.®. Illyavea, C.B. Tpopumenro, B.B. Cuiuerro

Paccmorpena mpobiiema n3MepeHns XapakKTepUCTUK TOPMO3HOTO M3JIyY€HUs TTPU MIHOBEHHOM DACCEsTHUU De-
JISTUBUCTCKOTO 3JIEKTPOHA, HA, DOJIBIION YyroJ B YCIOBUSX, KOT/A MTOMEPEYHBIE PACCTOSHUSI, OTBETCTBEHHBIE
3a MPOIecC U3JIyUeHN s, UMEIOT MaKpOoCKonndeckne pa3Mepsl. 1loka3zaHo, 9T0 B 9TOM ciaydae pe3yIbTaThl U3-
MepEeHU# CyIHIeCTBEHHO 3aBUCAT OT Pa3Mepa JIETEKTOPa U €ro II0JI02KEHU:A OTHOCUTEJIbHO TOYKU PACCesHUd.
Paccmorpena 3ama4a 0 mepexoHOM U3JIy Y€HUU 3JIEKTPOHA C HEPABHOBECHBIM COOCTBEHHBIM I10JIEM, KOTOPBII
obpa3oBaJiCs B Pe3yJIbTaTe ero Pe3koro paccesduus. [lokazaHo, 9T0 cOCTOsiHUE JIEKTPOHA C HEPABHOBECHBIM
TI0JIEM TIPOABJIAETCA B M10/IABJIEHUH TE€PEXOTHOTO U3JIYYEeHUA U OCIHUIIIATOPHOM XapaKTepe 3aBUCUMOCTU €ro
XapaKTEPUCTUK OT PACCTOAHUSA MEXK/Iy IJIACTUHKOMN, Ha KOTOPOU MPOMCXOJUT M3JIydYeHue, U TOYKO pacces-
HUA.

E®EKT IIEPEAXBUJIBOBOI 30HU ¥V IIEPEXIJTHOMY TA TAJIbMIBHOMY
BUIIPOMIHIOBAHHI PEJIATUNBICTCBHKOI'O EJIEKTPOHA

M.®. ITyavea, C.B. Tpopumenrxo, B.B. Cuwenro

PosrisinyTo npobsiemy BUMIDIOBaHHS XapaKTEPUCTUK IAJbMIBHOIO BUIIPOMIHIOBAHHSA IPU MHUTTEBOMY DPO3-
CisiHHI PeJIATUBICTCHKOIO €JIEKTPOHA HA BEJUKHI KyT B YMOBAaX, KOJIM IOIEPEeYHi BijicTaHi, 1110 BiJIIIOBI/IAI0TH
3a IPOIEC BUIIPOMIHIOBAHHS, MAIOTh MaKpOCKomidHi po3mipu. Ilokazamo, 1m0 B MbOMY BHIIAJKY PE3yTbTATH
BUMIPIOBAHb CYTTEBO 3aJI€2KATh BiJl pO3MIpPY JE€TEKTOPA Ta MOTO0 MOJIOXKEHHS BiTHOCHO TOYKU PO3CigHHs. Po3r-
JITHYTa 33/1a9a PO TTepexi/IHe BUTPOMiHIOBAHHS €JIEKTPOHA 3 HEPIBHOBAYKHUM BJIACHUM TIOJIEM, IO YTBOPUBCS
B pe3y/bTaTi #oro pizkoro poscisuus. IlokazaHo, Mo cTaH eIeKTPOHA 3 HEPIBHOBAYKHUM II0JIEM BUSIBJISETHCS
B [PUIVIYIIEHH] NEPexXi/HOr0 BUIIPOMIHIOBAHHS Ta OCHHUJSIIMHOMY XapakKTepi 3a/eXKHOCTI Horo xapakrepu-
CTHK BiJI BificTaHi MiK IJIACTUHKOIO, Ha sIKi#l BiZOyBAETHCS BUIIPOMIHIOBAHHSA, i TOYKOIO PO3CIsIHHS.
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