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Application of the functional integration methods in equilibrium statistical mechanics of quantum Bose-systems is

considered. We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over

a special Gauss measure defined in the corresponding space of continuous functions. We consider some problems

related to integration with respect to this measure.
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1. INTRODUCTION

Feynman [1] was the first to use functional integration
in quantum physics. The construction of the Feyn-
man functional (continual) integral shares common
features with the Wiener integral. However, these
integrals are essentially different [2].

The idea of expressing physical observables as
continual integrals was developed in quantum field
theory for representing Green functions. In due
course, two such representation methods appeared
almost simultaneously. One of them was based on for-
mal integration of equations in variational derivatives
for Green functions [3–5]. Bogolyubov [6] developed
another approach proceeding from the representation
of Green’s functions in terms of vacuum expectations
of chronological products, and the averaging oper-
ation over the boson vacuum was interpreted as a
functional integral. The Bogolyubov functional inte-
gration method was used to study problems of gradi-
ent transformations for electrodynamic Green’s func-
tions and to investigate the Bloch–Nordsiek model.
Bogolyubov returned to this construction within the
framework of statistical mechanics when investigat-
ing the polaron model [7]. It was shown in [8] that
the measure appearing in the Bogolyubov approach
is the Gaussian measure in the related space of con-
tinuous functions. The Gibbs equilibrium means of
chronological products of operators are expressed as
functional integrals with respect to this measure.

2. BOGOLYUBOV’S MEASURE

If Â is a linear span of Bose operators and Γ̂ is a
positive definite quadratic Hamiltonian, then the fol-
lowing formula holds [7]:

2 ln〈e �A〉 = 〈Â2〉. (1)

Here 〈. . . 〉 = Tr
[
. . . e−β�Γ

]
/Tr e−β�Γ denotes the

Gibbs average with respect to the Hamiltonian Γ̂, β
is the inverse temperature.

We consider the average〈
T exp

[
i

N+1∑
k=1

νkQ̂(sk)
]〉

, (2)

where νk are real numbers and

0 = s1 < s2 < · · · < sk < · · · < sN < sN+1 = β. (3)

T is a chronological product. The operators Q̂(s) and
Γ̂ are given by

Q̂(s) = es�Γq̂e−s�Γ, Γ̂ =
p̂2

2m
+

mω2

2
q̂2,

which means that we consider the one-dimensional
harmonic oscillator. q̂ and p̂ are the standard co-
ordinate and momentum operators. Taking (1) into
account, we can write〈

T exp
[

i

N+1∑
k=1

νkQ̂(sk)
]〉

= exp

{
−1

2

N+1∑
n=1

N+1∑
m=1

νnνm

〈
T
[
Q̂(sn)Q̂(sm)

]〉}
.

We evaluate the average in the right-hand side of
the last relation using the definition of chronological
product, which leads to the formula〈

T
[
Q̂(sn)Q̂(sm)

]〉
=
(
2mω(1 − e−βω)

)−1

×(e−ω|sn−sm| + e−βω+ω|sn−sm|).
Thus, we have the following representation for the
average (2):〈

T exp
[

i

N+1∑
k=1

νkQ̂(sk)
]〉

= e−Ω({νk}) (4)
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with the quadratic form in νk given by

Ω({νk}) ≡ 1
2mβ

∞∑
n=−∞

∣∣∑N+1
k=1 νke2πinsk/β

∣∣2
ω2 + (2πn/β)2

.

It is obvious, that Ω ≥ 0. Moreover, Ω = 0 if and
only if ν1 + νN+1 = 0 and ν2 = 0, . . . , νN = 0.

Introducing new variables η1 = ν1 + νN+1, η2 =
ν2, . . . , ηN = νN , we can rewrite (4) as〈

T exp
[

i

N+1∑
k=1

νkQ̂(sk)
]〉

= exp
(
−1

2

N∑
j=1

N∑
k=1

Ajkηjηk

)
, (5)

where

N∑
j,k=1

Ajkηjηk =
1

mβ

∞∑
n=−∞

∣∣∑N
k=1 ηke2πinsk/β

∣∣2
ω2 + (2πn/β)2

(6)

and the covariance matrix has the following elements:

Ajk =
1

2mω sinh(βω/2)
cosh

(
βω

2
− βω

N
|j − k|

)
.

When deriving this formula, we defined partition (3)
by the simple relation sj = βN−1(j − 1).

Consider the expression∫ 〈
T exp

[
i

N+1∑
k=1

νkQ̂(sk)
]〉

× exp
{
−i

N+1∑
k=1

νkqk

}
dν1 . . . dνN dνN+1,

where qk are real numbers and the integration with
respect to each variable νi goes over the entire real
axis. Taking into account (5) and the known values
of Gaussian integrals, we obtain

1
(2π)N+1

∫ 〈
T exp

[
i

N+1∑
k=1

νkQ̂(sk)
]〉

× exp
{
−i

N+1∑
k=1

νkqk

}
dν1 . . . dνN dνN+1

= ρ(q1, q2, . . . , qN+1), (7)

where

ρ(q1, q2, . . . , qN+1) =
1√

(2π)N

δ(q1 − qN+1)√
detA

× exp
[
−1

2

N∑
j,k=1

(A−1)jkqjqk

]
, (8)

δ(q) is the Dirac delta function, and A−1 is the inverse
covariance matrix inverse to A with the elements(
A−1

)
ij

=
mω

sinh(βω
N )

(
2 cosh

βω

N
δi,j −δi,j+1−δi,j−1

)
.

It follows from (8) that

ρ ≥ 0,

∫
ρ dq1 . . . dqN+1 = 1. (9)

Using relation (7), we can evaluate averages of the
form 〈

T
[
f(Q̂(s1), . . . , Q̂(sN+1))

]〉
.

Indeed, we recall the complex Fourier formula

f(Q1, . . . , QN+1) =
1

(2π)N+1

∫
f(q1, . . . , qN+1)

× exp
{

i
N∑

j=1

νj(Qj − qj)
}

dq1 . . . dqN+1 dν1 . . . dνN+1.

Since the operators Q̂(sj) commute under sign of the
T -product, we have〈

T
[
f
(
Q̂(s1), . . . , Q̂(sN+1)

)]〉
=

∫
f(q1, . . . , qN+1)

× ρ(q1, . . . , qN+1) dq1 . . . dqN+1. (10)

Taking into account properties (9), we see that

0 ≤ 〈T [f(Q̂(s1), . . . , Q̂(sN+1)
)]〉 ≤ M,

if 0 ≤ f
(
Q̂(s1), . . . , Q̂(sN+1)

) ≤ M. (11)

Now, consider the functionals F (q) on the real
functions (“trajectories”) q(s) defined on the segment
0 ≤ s ≤ β. Let us construct the integral

I ≡
∫

F (q) dμ (12)

with respect to the corresponding measure.
We first consider the subset of “special func-

tionals” [7] that are continuous functions of a finite
number N of variables, F (N)(q) ≡ Φ(q1, q2, . . . , qN ),
where qj = q(sj). In this case, we obtain

I(N) =
∫

Φ(q1, q2, . . . , qN )

× ρ(q1, q2, . . . , qN) dq1 dq2 . . . dqN . (13)

Then, formulas (10) and (11) imply that〈
T
[
F (N)(Q̂)

]〉
=
∫

F (N)(q) dμ

and that
〈
T
[
F (N)(Q̂)

]〉 ≥ 0 if F (N)(q) ≥ 0 for arbi-
trary real numbers q1, q2, . . . , qN . We now consider a
sequence of functions {qN(s)}, N = 1, 2, . . . , that are
defined as follows:

qN (s) = q(sj), sj ≤ s < sj+1, j = 1, 2, . . . , N,

qN (β) = q(β). (14)

The set of points {sj} is the partition (3) of the
segment [0, β]. We suppose that |sj+1 − sj | ≤ Δs
for j = 1, 2, . . . , N and assume that Δs → 0 as
N → ∞. Then the sequence of step functions (14)
uniformly tends to the function q(s). Path inte-
gral (12) can be defined as the limit N → ∞ of
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integrals (13), defined on the subset of special func-
tionals, because the functionals F (qN (s)) belong to
this subset I = limN→∞ I(N).

Consider the space C◦[0, β] of continuous func-
tions q(s) defined on the segment [0, β] that sat-
isfy the condition q(0) = q(β). This is a metric
space with respect to the uniform metric ρ(q, p) =
sups∈[0,β] |q(s) − p(s)|. The square matrix A = (Ajk)
of order N is positive and symmetrical, i.e., the map-
ping (j, k) → Ajk is a positive-type kernel on the set
{1, 2, . . . , N}. Hence, we can speak of the Gaussian
measure γA on the space RN with the covariance A.
By the Stone–Weierstrass theorem, the correspond-
ing set of special functional is dense in the set of all
continuous functions defined on the space C◦[0, β].
In the space C◦[0, β], we can introduce a σ-algebra
generated by quasi intervals (cylindrical sets). This
σ-algebra coincides with the σ-algebra generated by
the sets that are open in the metric ρ. Extending the
Gaussian measure from the quasi intervals to their
Borel closure, we obtain a Gaussian measure in the
space C◦[0, β].

3. GIBBS EQUILIBRIUM AVERAGES

So we see that the Gaussian measure μB with zero
average and the correlation function

B(t, s) =
1

2mω sinh(βω/2)
cosh

(
ω|t − s| − βω

2

)
(15)

is defined in the space X = C◦[0, β] of continuous
functions on the interval [0, β] with the uniform met-
ric ρ = maxt∈[0,β]

∣∣x(t) − y(t)
∣∣ that satisfy the condi-

tion x(0) = x(β). Measurable functionals F (x) are
considered on the space with measure {X, G, μB},
where G is an isolated σ algebra of subsets in this
space. In this case, the formula

〈
T
[
F
(
Q̂(t)

)]〉
�Γ

=
∫

X

F
(
x(t)

)
dμB(x) (16)

holds for the Gibbs equilibrium mean of the T -
product taken with respect to the Hamiltonian Γ̂ of
the harmonic oscillator; the integral is understood as
the Daniell integral over the space X ,

Γ̂ =
p̂2

2m
+

mω2

2
q̂2, Q̂(t) = et�Γq̂e−t�Γ,

〈 · 〉
�Γ =

Tr( · e−β�Γ)

Tr e−β�Γ
,

where q̂ and p̂ are the respective coordinate and mo-
mentum operators of a particle with mass m that
satisfy the commutation relation [q̂, p̂] = i (h̄ = 1
is assumed), β is the reciprocal of the temperature,
and ω is the eigenfrequency of the oscillator (β > 0,
ω > 0.) The average in formula (16) exists and is
finite for an integrable functional F (x). The measure
μB thus defined is called the Bogolyubov measure.

Note also that in the case of the Bogolyubov mea-
sure, the function G(t, s) = −mB(t, s) is the Green’s
function of the boundary value problem:⎧⎨⎩

y′′ − ω2y = 0,
y(0) = y(β),
y′(0) = y′(β)

on the segment [0, β].
Let a1, a2, . . . , an be linearly independent ele-

ments in a separable Hilbert space H whose closure is
the support of a measure μ and which is dense almost
everywhere in X . Then,∫

X

F
[
(a1, x), (a2, x), . . . , (an, x)

]
dμ(x)

= (2π)−n/2 1√
detA

∫
Rn

e−(A−1u,u)/2F (u) du (17)

if one of the integrals in (17) exists, where A
is the matrix of the elements aij = (ai, aj)H ,
i, j = 1, 2, . . . , n, u = (u1, u2, . . . , un), and du =
du1du2 · · ·dun.

For example, in the case of the Bogolyubov mea-
sure:

〈q̂2〉
�Γ =

∫
X

x2(t) dμB(x) = B(t, t) =
1

2mω
coth

βω

2
,

〈eaq̂2〉
�Γ =

∞∑
n=0

(2n)!
2n(n!)2

(
a〈q̂2〉

�Γ

)n
=

1√
1 − a coth(βω/2)/(mω)

, (18)

where we should assume that −mω tanh(βω/2) ≤
a < mω tanh(βω/2) in the second formula.

Consider the family of operators {T (β) : 0 ≤ β <
∞} that act in the space L2(R) by the rule

(T (β)f)(x) =
∫

X

dμB(y) f

(∫ β

0

y(t) dt + x

)
. (19)

It is obvious that T (0) = I. We obtain

(T (β)f)(x) (20)

=

√
mω2

2πβ

∫ ∞

−∞
f(y) exp

[
− (y − x)2mω2

2β

]
dy.

Formula (20) is the well-known formula for the free
semigroup in the case of the heat equation. Thus, the
family of operators (19) is indeed a strongly continu-
ous semigroup in the space L2(R). The generator of
the semigroup is given by

L =
1

2mω2

d2

dx2
,

and for any function f ∈ L2(R), the function
u(β, x) = (T (β)f)(x) is the solution of the Bloch
equation

∂u

∂β
=

1
2mω2

∂2u

∂x2
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subject to the initial condition u(0, x) = f(x).
Formula (19) implies the relation between the Bo-
golyubov and Wiener measures∫

C◦[0,mω2t]

f

(
x +

∫ mω2t

0

y(τ) dτ

)
dμB(y)

=
∫

Ct
0

f(y(t) + x) dμW(y),

where Ct
0 is the space of continuous functions on [0, t]

that vanish at zero.
A Gaussian random process with a Bogolyubov

measure has independent increments, i.e., the ran-
dom variables y(t2)−y(t1), . . . , y(tn)−y(tn−1), where

y(t) = ω−1x(t) +
∫ t

0

x(τ) dτ, 0 ≤ t ≤ β, (21)

are independent for any 0 < t1 < t2 < · · · < tn ≤ β.

4. THE INEQUALITY

Consider a system with a Hamiltonian Ĥ = Γ̂ + V̂ ,
where V̂ = V (q̂) is the interaction, and consider
a one-parameter family of Hamiltonians, Ĥ(h) =
Γ̂(h) + V̂ , h ∈ R,

Γ̂(h) =
p̂2

2m
+

mω2

2
(q̂ − h)2.

The partition function Z(h) = Tr e−β �H(h) of
the system under consideration becomes Z(h) =
Tr e−β[�Γ+V (q̂+h)] after the canonical transformation
q̂ − h → q̂. We will assume that the interaction po-
tential is nonnegative and symmetric, i.e., V (x) ≥
0, V (x) = V (−x). Using the operator of chrono-
logical ordering, we can write [7]

e−β(�Γ+�V ) = e−β�ΓT exp
(
−
∫ β

0

ds es�ΓV̂ e−s�Γ

)
.

Then,

R(h) ≡ Tr e−β �H(h)

Tr e−β�Γ

=
〈

T exp
[
− ∫ β

0
ds V

(
Q̂(s) + h

)]〉
�Γ

. (22)

Expressing (22) in terms of the Bogolyubov func-
tional integral, we obtain

R(h) =
∫

X

exp
[
−
∫ β

0

ds V
(
x(s) + h

)]
dμB(x).

We can prove that

R(h) ≤ R(0). (23)

Condition (23) implies, in particular, that

(q̂, q̂)
�H ≤ 1

βmω2
, (24)

where the Bogolyubov inner product of arbitrary op-
erators Â and B̂ is defined as

(Â, B̂)
�H =

1

β Tr e−β �H

∫ β

0

ds Tr
[
e−s �HÂe−(β−s) �HB̂

]
.

If we pass from the operators q̂ and p̂ to operators
b̂ and b̂† by the relations

q̂ =
1√

2mω
(b̂ + b̂†), p̂ = i

√
mω

2
(
b̂† − b̂

)
and take into account the selection rules for equi-
librium averages with respect to a quadratic Hamil-
tonian, we can rewrite inequality (24) as

(
b̂†, b̂

)
�H
≤

(βω)−1
.

Relation (24) can be used to derive an inequality
for the Gibbs equilibrium average 〈q̂2〉

�H . To this end,
the Falk–Bruch inequality [9] should be used. Let

g = 〈q̂2〉
�H , b = (q̂, q̂)

�H , c =
〈[

q̂, [βĤ, q̂]
]〉

�H
.

Suppose that the upper estimates b ≤ b0 and c ≤ c0

hold. Then,

g ≤ g0 ≡ 1
2

√
c0b0 coth

√
c0

4b0
.

In our case b0 = (βmω2)−1, c0 = β/m, and the above
inequality yields

〈q̂2〉
�H ≤ 1

2mω
coth

βω

2
= 〈q̂2〉

�Γ.

Condition (23) is an example of the so-called
Gaussian domination condition [10], and condi-
tion (24) which follows from (23), is an example
of the so-called local Gaussian domination condi-
tion [11], which plays an important role in phase
transition theory.

5. CONCLUSIONS

A review of some recent developments in the the-
ory of integration with respect to the Bogolyubov
measure that arises in the statistical equilibrium the-
ory for quantum systems is presented. It is shown
that the Gibbs equilibrium averages of Bose opera-
tors can be represented as functional integrals with
respect to this measure. The metric and dynamic
properties of Bogolyubov trajectories in the corre-
sponding functional space are established. Certain
functional integrals with respect to the Bogolyubov
measure are calculated. A certain useful inequality
for traces is proved. For a detailed review of the the-
ory of Bogolyubov functional integral, with extensive
references in the literature, see Ref. [12].
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10. J. Fröhlich. The pure phases (harmonic func-
tions) of generalized processes or: mathematical
physics of phase transitions and symmetry break-
ing // Bull. Am. Math. Soc. 1978, v. 84, p. 165-
193.

11. D.P. Sankovich. Gaussian domination: quantum
nonlinear oscillator // Theor. Math. Phys. 1989,
v. 79, p. 656-665.

12. D.P. Sankovich. The Bogolyubov functional in-
tegral // Proc. of the Steklov Inst. of Math. 2005,
v. 251, p. 1-33.

����������� 	
��������� �	�
��� � ��	
 ���������


���� �����	
�

���������	� 
����	�	�� ������
 ��	����	���	��� �	�������
�	�� 
 �
�	��
�� ��
	�
��	�� ������

��������� ����	��� ������������ ������	�� ��� ������
���� ��
	�
��	�� ����	�� ������
�������
 ���

��� ���� 
������
��	� 
 
��� ��	����	���	�� �	�������
 
� �
������	�� ������
�� ����� �
�����

��		�� 
 ����
����
� !�� 
������	��
� 	�
����
	�� ��	����� ���������	� 	�������� 
�
�����

��	���!���� � �	�������
�	� 
� ��		�� �����

���������� 	�����
��� ��	�
�� � ��	
 ���������


���� �����	
�

������	��� �������
�		� �����"
 ��	��"�	���	��� "	�����
�		� � �
�	��
"� �"
	�
�#	"� ���������	"�

����	"�" ������������ ������	�� !� �����
���" �"
	�
�#	" �����	" �
������"
 ��#��� ���� 
������
��	"

� 
�����" ��	��"�	���	�� "	������"
 
� �
��"���	"� �����
"� �"�"� 
��	���	"� � 
"�
�
"�	��� 
������"

���
����
	�� ��	��"�� ������	��" ����" 
���		�� !� 
"�	������� �� "	�����
�		� 
� ��	"� �"�"�

$%$


