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The integrability of WZNW model and string model of WZN'W model type with constant SU(2) torsion is investigated.
The closed boson string model in the background gravity and antisymmetric B-field is considered as integrable system
in terms of initial chiral currents. The model is considered under assumption that internal torsion related with metric
of Riemann-Cartan space and external torsion related with antisymmetric B-field are (anti)coincident. New equation

of motion and exact solution of this equation was obtained for string model with constant SU(2) torsion.

New

equations of motion and new Poisson brackets (PB) for infinite dimensional hydrodynamic chains was obtained for
string model with constant SU(n), SO(n), SP(n) torsion for n — oo.

PACS: 02.20.Sv, 11.30.Rd, 11.40.-q, 21.60.Fw

1. INTRODUCTION

1.1 String Model

A closed string model in the background gravity
Jab(¢) and antisymmetric fields B,y (¢) in the confor-
mal gog = €®nap and light-cone gauge is described
by the Lagrangian:

2m
1 O¢~ 0¢*
—= 5/ {\/—_ggaﬂgab(@ ajoz %
0

a b

x> 9P

Here gab(¢(t,xz)) is the metric tensor of curve n-
dimensional space ¢%(x + 2m) ¢*(z), (a,b =
1,2,...,n):

9abr(9) = Gva(®), Ban(¢) = —Bpa(9).

gH¥ is the metric tensor of flat space, tangent space
to curve space in point ¢(¢,z) and p,v = 1,2,....,n
Both metric can have the arbitrary signature.
Jap(t,z) is the metric tensor of curve 2-d space,
(o, 6 =0,1). In the repers formalism

gab(¢)

= ea(@)er (@) gpw-

The repers ef satisfy to condition ¢* =
e (¢p)er (¢)g*(¢). In the conformal gauge
G = 60(t,w)77aﬂ

Lagrangian does not depend on field (¢, x).
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Equation of motion. The equation is:

gar( @)1 5 zgaﬁ + Taper)™” g_ﬁ gf;
et 9290, )
Pape = %(%i;‘f %ij; - gif’:),
Hape = aai“f aaij,“ + aajzlf.
In the terms of repers the connection
0(0) = 210% + 2

is symmetric on a, b. The function Hg,p. is a total
antisymmetric function on a, b, c.

Canonical currents. Let us introduce new vari-
ables to obtain first order equation instead of second

| €% (&)pa — Bap(#)"]
J(6) = e,

Canonical momentum

Jo(¢) =

palt, ) = ()8 + Bus®, ¢ = % g0 = O
Equations of motion in new variables are:
o0t = 00Tl = O (0)Jg 7 -
OoJy —OJy = —H})\ (9)J§ J7.
Here C** is the torsion:
ety = 0 ehes — exch) = (2%~ hyer (3
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Algebra of PBs. Let us consider commutation re-
lation function J¥, a = 0,1 in the phase space on
the PB:

(I (@), J§ ()} = CL" () I3 (2)8(x — y)
+HL (6)J7 ()8 (z — y),
{5 (@), ] ()} = CY" () J7 ()8 (x — y)
{Ji' (@), 7 (y)} = 0.

Let us introduce chiral variables:
UH = 5“DJOV + j{ﬂ VH = 5“”‘]01/ _ J{L.

The chiral variables satisfy the following relations un-
der PB [1]:

{U4(2), U ()} = 31304 + B0~
(O + HE W0l — ) + 3 2o — ),

{V*(), V" (y)} = 5[BCL — HY)V~

N =

v v v 8
(€4 = HE U)o — y) = 0" —b(z — y),

{U9(@), V" ()} = 5[ + HE 0+

+(CY = H{)Vo(z — ).

Here function H,,x(¢) is an additional external tor-
sion. These PB’s form algebra if:

1HCY" =0,H{" =0
and functions U (z) are abelian currents;
04", By

are structure constants f{ of Lie algebra, and the
functions U¥(z) are chiral currents. Here are two
possibility to simplify this algebra:

1) HY" = =CY",

Y),
(4)

{U(2), U7 ()} = CRUP0(a — ) + 0 2o~
2) H" = O,

{Vi(z), V¥ (y)} = CL" VA — 5’“’%5@ —y).

We do not write down the remaining commutation
relations. The chiral currents U* in first case and V*#
in second case form Kac-Moody algebras. Equations
of motion in light-cone coordinates
1 0 0 0
+

+ 1 9 _9
= Q(tim)’axi ot

have the following form:

ox

HY\ = —Cl\, 0_U* =0, 0, V" =20 UV,
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HY, =Ct\, 0,V* =0, 0_U" = 20" U" V™.
The chiral currents U*(x) are generators of transla-
tion on the curved space

6¢%(x) = {¢%(2), MUn(2)} = cfeji(d) = ¢*(9)-

Simultaneously, they are generators of group trans-
formations with structure constant C{” in the tan-
gent space.

1.2 Integrable string model with null
torsion C}” =0

To construct integrable dynamical system we must
have hierarchy of PB brackets and find hierarchy of
Hamiltonians through bi-Hamiltonity condition. We
have used the hydrodynamic approach of Dubrovin,
Novikov [2,3] to integrable systems and Dubrovin [4]
solutions of WDVV associativity equation to con-
struct new integrable string equations of hydrody-
namic type in the torsionless Riemann space of chiral
currents [5—7]. The basic idea of hydrodynamic ap-
proach is construction of compatible PB of abelian
currents from PB on the flat space of currents and
from PB on the curved space of currents. The Jacobi
identity for compatible PB led to WDV'V associativ-
ity equation for metric tensor of curved space. Also,
we can construct recursion operator from Hamil-
tonian operators of flat PB and of compatible PB.
The degrees of recursion operator generate new PBs
and new Hamiltonians through bi-Hamiltonity con-
dition.

2. INTEGRABLE STRING MODEL
WITH CONSTANT TORSION

Another way to construct integrable dynamical sys-
tem is the following. We must have the hierarchy
of Hamiltonians and find the hierarchy of PB brack-
ets. This way is more simple if the dynamical system
have some group structure. Let torsion Cf.(¢)) # 0
and Cyype are structure constants of a Lie algebra. In
bi-Hamiltonian approach to integrable string models
with constant torsion we have considered the con-
served primitive chiral currents C,(U(z)) as local
fields of the Riemann manifold. The primitive and
non-primitive local charges of invariant chiral cur-
rents form the hierarchy of new Hamiltonians. The
primitive invariant currents are densities of Casimir
operators. The non-primitive currents are functions
of primitive currents. Commutation relations (4)
show that currents U* form closed algebra. There-
fore, we will consider PB of right chiral currents U*
and Hamiltonians constructed only from right cur-
rents. The constant torsion does not contribute to
equation of motion, but it gives possibility to in-
troduce group structure and to introduce symmetric
structure constant.



Let t,, are the generators SU(n), SO(n), SP(n)
of Lie algebras:

[tu, t,,] = 2’L'f,w,\t)\.

()

There is additional relation for generators Lie algebra
in the definition of matrix representation. There is
following relation for symmetric double product gen-
erators of SU(n) algebra:

4

{tut,} = 55*‘” +2data, p=1,...,n* —1. (6)
Here d,,,» is total symmetric structure constant ten-
sor. The similar relation for total symmetric triple
product of SO(n) and SP(n) algebras has form:

tututy)y = v (7)
Here Vpuw 18 total symmetric structure constant ten-
sor. The invariant chiral currents can be constructed

as product of invariant symmetric tensors:

p
JTI70N tP'

knf?)
H7n—1NNI)’

_ dkl dkz

(pap2 “paky™

dy

Biefin) =

d/tl 2 = 6#1#2

for SU(n) group and initial chiral currents U*:

Cn(U(2)) = dipy...i) Ui Upsy U, , Co = 5WU“U(”.)

8
Any of this currents satisfy to equation of motion
0_C(n)(U(x)) = 0. A similar construction can be
used for SO(n), SP(n) groups. The invariant chiral
currents can be constructed as product of invariant
symmetric constant tensor

V2n—3
H2n—2ft2n—1H2n)’

vivo

U(ua.pzn) = ([L1[L2,U.'3UH4N5 ’

Vpipe = 5#1#2 .

and initial chiral currents U*:

an = U/L1___IL2TLU“1...U“2”, CQ = 5#1/L2U#1U#2. (9)
The invariant chiral currents for SU(2), SO(3),
SP(2) have form:
Capn = (Co)™. (10)

Another family of invariant symmetric currents .J,
is based on the invariant symmetric chiral currents
on simple Lie groups, realized as symmetric trace
of n product chiral currents U(z) = t,U*, p =
1,...,n% —1:

Jp = SymTr(U...U). (11)
These invariant currents are polynomials of product
of basic chiral currents Cy, k = 2,3, ..., k. The com-
mutation relations for chiral curents have form:

0

{Cn(2), Cn(y)} = Wmn(y)a_y

6(y — )

—an(m)%&m — ).

Hamiltonian function W,,,(z) for finite dimensional
SU(n), SO(n), SP(n) group has form:

n—1
Wmn(x) m4+mn—2 Zakcm-l-n 2]6 ) (12)
Z ar = mn.
k=0
Here the invariant total symmetric currents
Cnk, k = 1,2... are new currents, which are

polynomials of product of basic invariant currents
Cn,Cpn,..Cp., n1 + ... + n, = n. They can be ob-
tained during calculation of total symmetric invariant
currents J,, by different replacements of double prod-
uct using (6) for SU(n) group and triple product
using (7) for SO(n) group. This PB can be rewritten
as PB of hydrodynamic type

{Cn(e), Cal)} =~

0
X a—me+n—2,k($)5($ -y)

(13)

0
- m+n—2,k(x)%5(33 —y).

Here are only [ = n— 1 primitive invariant tensors for
SU(n) algebra, | = 251 for SO(n) algebra and | = %
for SP(n) algebra. Higher invariant currents C,, for
n > |+ 1 are non-primitive currents and they are
polynomials of primitive currents. The charges, cor-
responding to non-primitive chiral currents, are not
Casimir operators. The expression for these polyno-
mials are obtained from the generating function

o0

)\’I’L
det(1 — At UH) = Trn(=A0) — oxp (— Z —Jn).
n

Here exists only one primitive invariant tensor in
SU(2). The invariant non primitive tensors for n > 2
are functions of primitive tensor. Let us introduce
the local chiral currents based on the invariant sym-
metric polynomials on SU(2) Lie group:

Co(U) = 6apUU?, C(U) = (8,5UU°)",
where n = 1,2, ....
{Ca(z), Ca(y)} =2C2(y)0y 6 (y—2) —2C2(x) 056 (2 —y).

Cs(z) is local field on the Riemann space of chiral
currents. As Hamiltonians we choose functions

1 2Trn1
.m=%ﬁ3/0+my (14)

The equation of motion for density of first Casimir
operator has form:

0C5 2Ca

ot + (2n+1)(Cs) P 0. (15)
The equation for currents C3' is following:

oCcy 203

ot + (2n+1)(C2) o 0.
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This equation is inviscid Burgers equation. We will
to find the solution in the form:

C3'(tn, 2) = exp (a + i(x — t,CF (tn, )))-

To obtain solution we rewrite equation of motion in
following form: Y, = Z,e?", where Y, = it,e(*ti®)
Z, = 1it,C%. The inverse transformation Z, =

Z,(Yy) is defined by Lambert function:

1
i(2n+ 1)ty

Consequently, solution for first Casimir operator is:

Cp =

W(i(2n 4 1)t,e? ).

1 N
) = [ oW (i(2n + Dt tiT) ) .
Co(tn,x) (i(2n+1)tn (1(2n + 1)t,e®™™")

(16)
The equation of motion for initial chiral current U*
defined by PB (5) and Hamiltonian (14) is

ou+
Oty

3. INFINITE DIMENSIONAL
HYDRODYNAMIC CHAIN

= 8, [UM(UU)"], p=1,2,3.

In the case, if dimension of matrix representation n
is not finite, all chiral currents are primitive currents.
This easy to see from expression for new chiral cur-
rents Ci, . . For example:

2 2
08,1 =Cs+ —C3C5 — —CC%.
n n

The algebra of PB for chiral currents has the form:

0

{Cm(l'), Cn(y)} = Wmn(y)8_y5(y - ZL’)—
W (@) — 1) a7)
nm () 50z —y)-
_mn(n—1)
This PB satisfies to skew-symmetric condition
{Cn(2),Cr(y)} = —{Cn(y),Cm(z)}. Jacobi iden-

tity imposes conditions on the Hamiltonian function
W (2):

0 0
(Wkp + ka) - (ka + ka:)

80 80
0 0 0 0

The Jacobi identity satisfies for metric tensor
Wn(U) (18) for m = p from compatibility condi-
tion of Kronekers 0,,1n—2% and dp4n—2%. This PB
can be rewritten as PB of hydrodynamic type and
describes the hydrodynamic chain (see [8,9] and ref-
erences therein):

mn(n — 1)

{Cn(2),Cr(y)} = — m4+n—2

0
X %Cm+n72(x)5(x )

- mnCern,g(x)—xé(x —9).

(20)
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The algebra of charges f Cp(z)dz is abelian algebra.

Let us choose as Hamlltomans the Casimir operators

Ch:
27

/C’n(x)dx, n=23...

0

1
n

The equations of motion for densities of Casimir op-
erators are the following:

27

0Cy,(z) 1

Xl _ 2 / Wonn (1)0,0(y — 2)dy—  (22)
0

1 27 ( )
min —
_E/W m(m)azé(m—y)dy = Ta Cm—i—n 2-
0

We can construct equations of motion for initial chi-
ral currents U* using flat PB (4) and Hamiltonians

H, (18), where C,, () is defined by (8) for SU(c0)
group:
ourz) 1 [
T
B I
= [ agvr@). Cuwlo.
0
OUy(x) .
o =0 (it 32 i 20U (@) U= ().
(23)
As example we consider n = 3:
BUIL _ vrTA
B = 0.(du U"U?).

By similar manner we can obtain equation of motion
for chiral currents of SO(n), SP(n):

U, ()

o ng(vﬁiuw3 ...Uﬁgz:;wn_lﬁU“l LRy
As example we consider n = 4: 2y
%—2‘ = 0u(du, U UNUP).
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NMHTEIrPUPYEMBIE BSHB-MOJIEJIN 1 CTPYHHBIE MOJEJIN B3HB-TUITA C
IIOCTOAHHBIM SU(2)-KPYYEHUEM

B./l. I'epwyn

Uccnenosana unrerpupyemocrs B3HB-mozmenu u crpynuoii mogesu B3HB-tuma ¢ mocrosuusim SU(2)-
Kpyd4eHueM. 3aMKHyTas OO30HHAs CTPYHA BO BHEIIHUX I'PDABUTAIMOHHOM WM AHTUCHUMMETPUYHOM MOJISIX PAC-
CMOTpPEHA KaK MHTErpupyeMasi CUCTEMa B TEPMUHAX HAYAJIbHBIX KHUPAJIbHBIX TOKOB. MoOmenb paccMoTpena
B TIPE/IOJIOKEHNUH, 9TO BHYTPEHHEE KpydYeHue, CBsa3aHHoe ¢ Merpukoil Pumana-Kaprana mpocTpaHcTBa, U
BHEIITHEEe KPYYEHUE, CBA3aHHOE C AHTUCUMMETPUYHbIM B-nojiem, (anTu)coBnagaor. Jjig MOZEIM CTPYHBI C
nocrosHEbIM SU (2)-KpydeHueM NoJly9eH0 HOBOE YDABHEHUsI JBUYKEHUS W HAiIEHO TOYHOE DEIEHUE B BUJIE
dyukuuu Jlambepra. dus mogenu crpyubt ¢ nocroguabiv SU(n)-, SO(n)-, SP(n)-kpyuenuem s n — 00
[0JIyYeHbl HOBBIE YPABHEHUS IBUKEHUs Jjis OECKOHEYHOMEPHBIX TI'HJIPOJAUHAMUYECKHUX IENOYEK U HOBBIE
ckobku Ilyaccona.

WHTETPOBAHI B3HB-MOJIEJII TA CTPYHHI MOJIEJII B3HB-TUITY 3
HOCTINHUM SU(2)-CKPYTOM

B./l. I'epwyn

Hocainxkena inrerposanicrs B3HB-moueni ra crpynnoi mogeni B3HB-runy ¢ nocriiinum SU (2)-ckpyrom.
SaMkHyTa O030HHA CTPpyHA B 30BHINIHIX IPaBITAIIfHOMY M AHTUCUMETPUYHOMY MOJISIX PO3IVIAHYTA AK iH-
TErpOBaHa CHCTEMA Yy TE€PMiHAX TMEPBICHUX KipaJbHUX CTPyMiB. Moenb po3ryIgHyTa 3a MPUIYIIEHHAM IO
BHYTPiIHi#i CKpyT, 3B’si3auwnii 3 meTpukoo Pimana-Kaprana mpocropy, Ta 30BHimHIN CKPYT, 3B’ a3aHuii 3 aH-
tucumerpudHuM B-nosiem, (antu)cnisnagaors. Jina moaeni crpynu 3 noctifinuM SU (2)-CKpyTOM ofep:KaHo
HOBE PiBHAHHS PyXy Ta 3Halimeni Touni pimenns y suriani Gyskiii Jlambepra. s mozesni crpynn 3 mocriii-
wum SU(n)-, SO(n)-, SP(n)-ckpyrom 3 n — o0 ouepzKani HOBI PIBHAHHS PYXY AJis HECKIHYEHHOBUMIDHUX
riIpoauHaMidHUX JIAHITIOTIB Ta HOBI aykku [lyaccona.
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