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We suggest an approach allowing restrict a gap between macro- and micro descriptions of nature (i.e. between

statistical thermodynamics and quantum mechanics) on the basis of a new heat bath model in the form of cold

and heat vacua. Despite of standard quantum mechanics we start from microtheory in the form of A, k-dynamics

suggested by us earlier. Its concept, in general case, founds on use of complex wave function which amplitude and

phase are depended on temperature.

PACS: 03.65.Bz, 05.70, 05.30.d

1. STATEMENT OF THE PROBLEM

At present, the interrelations between the macro-
and microdescriptions of the nature attract special
attention. Methods of equilibrium thermodynamics
turn out to be very effective in the description of
nano-objects. At the same time, methods of quan-
tum mechanics are used more and more frequently
to analyze macroscopic phenomena. Thus, the gap
between the macro- and microtheories existing in the
19 and 20 centuries narrows continuously.

In this connection, a number of researchers formu-
lated the problem of possible coordination between
these theories by incorporating thermodynamics into
quantum theory [1]. This idea suggests adapting
the apparatus of quantum theory to the description
of thermal phenomena, thus generating an illusion
about the complete reduction of the macrodescrip-
tion to the microdescription.

In our opinion, the idea of incorporating thermo-
dynamics into quantum theory by combining statis-
tical thermodynamics with quantum statistical me-
chanics is not very promising. The reason for this is
that the types of statistical ensembles used in them
(the Gibbs ensemble and the Boltzmann assembly,
respectively) do not coincide.

We assume that it is much better to synthesize
two other theories, namely, statistical thermodynam-
ics without considering quantum effects and quantum
mechanics without considering thermal effects. We
are guided by the important fact that the same type
of statistical collective (the Gibbs ensemble) is used
in them. In the framework of the (A, k)-dynamics,
proposed by us [2], we managed to construct a more
or less holistic description of equilibrium quantum-
thermal phenomena, including macroparameter fluc-
tuations. Thus, we propose to modify both theories
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by moving in opposite directions.

To do this, the c-number apparatus of statis-
tical thermodynamics, which makes it possible to
take equilibrium thermal macroparameter fluctua-
tions into account, must be incorporated into quan-
tum mechanics with its operator formalism. Intro-
ducing the vacuum wave function at nonzero tem-
peratures, we adapt quantum mechanics to the de-
scription of thermal effects.

From the other hand, the conceptual apparatus of
statistical thermodynamics must be extended using
c-number random quantities as previously. Matching
the operator formalism with effective macroparame-
ters [3], we adapt statistical thermodynamics to the
description of quantum effects.

2. MODIFICATION OF QUANTUM
MECHANICS FOR THE INCLUSION OF
THERMAL EFFECTS

In this paper, we refuse completely the density
matrix and have a deal with a complex wave function
depending on temperature. We renounce also an at-
tempt to introduce the notion of temperature for iso-
lated system and consider only a system in the heat
bath because there are no isolated system in nature.
We generalize the classical model of heat bath to the
quantum one and interpret it as quantum-thermal
vacuum.

Generalizing the apparatus of quantum mechanics
to take thermal effects into account, we assume that
the zeroth law, i.e., the fundamental condition for
the equilibrium of the object with the thermal-type
stochastic environment, is initial in thermodynamics.
Therefore, it would be natural to start with the de-
termination of the quantum state that is adequate for
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the equilibrium if the stochastic thermal action at the
minimal value of effective (but not Kelvin) tempera-
ture is additionally taken into account.

To do this, we turn to the universal geometric
properties of the Hilbert state space, in which the
Cauchy-Bunyakovsky-Schwarz inequality (CBSI) for
vectors

|op) = dply) and [0g) = dq[v)

holds. Here,

(1)

p—@plY);  dqa=q—(Plaly)  (2)
are the operators of momentum and coordinate fluc-
tuations.

The CBSI for these vectors has the form of
the most general Schrodinger uncertainties relation

(SUR) [4]:

op

Ap-Aq = [(¢]6p - 641¢)

; 3)

where

(Ap)? = (IR0 (Ag)? = (W|(60)2IY)  (4)
are the momentum and coordinate variances in the
state |¢), and

[(¥|6p - 8q1)| = |(dplog)| (5)
has the meaning of the momentum and coordinate
fluctuations correlator of the object in the same state
expressed in terms of the fluctuation operators 0p
and §4.

In thermodynamics, the equilibrium state is sta-
ble relative to small stochastic influence of environ-
ment. The correlation between corresponding typical
quantities is a mechanism for preserving this stabil-
ity in this case. In other words, it is necessary that:
(a) the correlator (5) was non equal to zero; (b) the
SUR had the form of equality, i.e. became saturated.
(Some heuristic considerations confirming this state-
ments will be stated below.)

Accordingly to the Schwarz-fon Neumann theo-
rem the equality in the SUR (3) can be realized if the
vectors |0p) and |dq) are proportional to each other,
ie.

Splw) = (i - €*)8g|v). (6)

Here, the real parameters v > 0 and « % 0. To sim-
plify calculations, we assume that the average mo-
mentum and coordinate in this state are zero.
It is interesting that the equation
(p —ive"*@vba) = 0, (7)
can be obtained from formula (6); it resembles the
result of the action of the annihilation operator

p—i¢q

V2hC

d:

on the state |[¢,). In the coordinate representation,
relation (7) takes the form of the differential equation
for the unknown function v, (q):

Eiwa — (i7e")q - Yo = 0.

i dq (8)

Solving it and using the normalization condition,
in the general case, we obtain the complex function

~1/4
ule) = [2n(8a0* | )

@
X exp{—iew‘}, cosa # 0

4(Aqgo)?
as the universal wave function ¥, (q); here,

h

Ag)? = —

( qo) 2'7’
(10)

. 9 hy

and respectively (Apo)* = >
The physical meaning of the function 1,(g) can be
clarified if we take into account that, for « = 0,

Eq. (8) for the function t)q is equivalent to the equa-
tion for the state |0), which is assumed to be called
the cold vacuum. Accordingly, for arbitrary a # 0,
the state ¢, describes an arbitrary vacuum. We
note that the standard way of obtaining this state
is related to the application of the Bogoliubov (u,v)-
transformation.

In the state of the arbitrary vacuum, the equali-
ties

(Apa)2 = 72(AQa)2;
[(0paldga)| = |ive"|(0galdga) = ¥(Aga)?.  (11)

hold for the average quantities. Substituting for-
mulas (11) to SUR (3), we see that the correlated
state |¢,) is marked, because the SUR becomes sat-
urated:
Apa - Aga = [(Yalp - dl¢a). (12)
In the cold-vacuum state |1hg) (for @ = 0), satu-
rated SUR (12) transforms into the saturated Heisen-
berg uncertainties relation

U 1 h
UO = Apo - Ago = |<¢0|§[ﬁ,(§]\¢0>| =5 =Jo. (13)

Here, Jj is the measure of the purely quantum en-
vironmental action (for @ = 0). Thus, for « = 0,
the correlator |<¢a |p - (j\wa>| has a minimum possi-
ble value. As it was to be expected, the state |ig),
in really, has the sense of equilibrium state with the
cold vacuum for it answers the minimal value of the

vacuum energy Uy = - On this ground, from now

on, we concede that saturated SUR (12) answers to
equilibrium state with arbitrary vacuum |t¢,).

It is assumed to regard relation (13) as a funda-
mental equality reflecting the presence of unavoidable
purely quantum effects in nature. This fact allows
suggesting a hypothesis that the functions making it
possible also to take into account thermal effects in
addition to the quantum ones. They can be found
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among the functions v, (q) providing saturation of
SUR (12) for a # 0.

To confirm it, we pass from vy to the function v,
of the arbitrary vacuum. Then the correlator in the
right-hand side of saturated SUR (12) can be repre-
sented in the form

= J(X?

h2
|<w04‘]5qA|'¢a>|: Ztg2a+n]](2):
(14)

where the term in the radicand, which is additional
if (14) is compared with (13), is related to the phase
of the function v,,.

The expression (14) depends on the quantity J,,
which generalizes the measure Jy of purely quantum
effects. Under our assumption it is capable of tak-
ing additional thermal effects into account too. To
do this, it is necessary to relate the obtained expres-
sions to the Kelvin temperature, which has no direct
preimage in quantum mechanics.

Of course, we did not infringe on the stability of
the framework of quantum mechanics without ther-
mal effects. We propose the solution only for a bor-
derline area in which quantum and thermal effects
cannot be neglected under equilibrium conditions.

1
Ccos Qv

| St

3. INTERRELATION WITH KELVIN
TEMPERATURE

We introduce the concept of thermal equilibrium
with the Kelvin temperature T, which is typical of
this state. To do this, we start from the experimen-
tally confirmed Planck expression for the average en-
ergy of the quantum oscillator in a thermostat:

hw w h
UT:gPl = TCOth (%f)7 %—%7 (15)

where » has the meaning of fundamental world con-
stant reflecting the simultaneous stochastic action of
the quantum and thermal types.

Taking into account that, for the quantum oscil-
lator in the equilibrium state, the average kinetic and
potential energies coincide, we obtain the coordinate
variance in this state:

2 1 h w
(AC]T)2 = E - =Ep; = — coth (%—) ,

2 2w T (16)

where we set m = 1 without loss of generality. Simi-
larly, we have
(Apr)? = he coth (%f) i at m=1 (17)

2 T

for the momentum variance.

In turn, calculating the coordinate variance in
terms of the arbitrary-vacuum wave function v, we
obtain

ho1
~ 2ycosa’

(Aga)? (18)
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We now compare two formulas (16) and (18) for the
coordinate variance. They coincide if we set

= h N '
= sa = |cot ( I )] ;
Y=w; cosa [co »

wy1~1
sina = [ch ()|
sin v [c S
For such a choice of the parameter « # 0, we choose

only functions 17 such that correspond to the equi-
librium with the environment at the temperature 7"

br(q) = [2m(Agr)?]
¢ 1
X - exp {—m(l - ZM)} .

They can be conditionally assumed to be the
functions of the “thermal” wvacuum. Accordingly,
the correlator of coordinate and momentum fluctu-
ations (14) becomes

(19)

(20)

h? h?
p - q =l =/——+ —. 21
|<¢T‘p Q|¢T>’ T 1oh2 %% + 1 ( )
Here, the quantity (sh %%)*1 in J; is directly related
to the phase of the wave function .
We now pay our attention to the fact that the
quantity J, can also be immediately obtained from
the correlator through the variance of coordinate:

h w
|<5pT\5qT>’ = w(AqT)2 =J, = 3 coth (%T) . (22)
Here, the dependence on the phase of the wave func-
tion 1, is hidden.
Together with the interrelation between momen-
tum variance and coordinate variance

(Apr)? = - (Aqr)?, (23)
both sides of saturated ”momentum-—coordinate”
SUR becomes

Aps - Agr = w(AqT)2 =Jr,. (24)

Thus, they are expressed only in terms of one quan-
tity, namely, the coordinate variance (Ag;)?; the
ways of calculating it can be various.

To clarify the physical meaning of the quantity J,
we rewrite saturated SUR (12) in the ”thermal-
vacuum” state ¥r(q) in the form

% = Apy-Agp =l = gcoth (”T%) . (25)
where we express the Kelvin thermostat temperature
Ty explicitly. We stress that, in this relation, the
left-hand side of the equality is expressed in terms of
the object characteristics and the right-hand side, in
terms of the environmental characteristics.

At high temperatures, the saturated SUR
Eq. (12) transforms into the equality 7' = Ty having
the meaning of the standard zero law (without con-
sidering temperature fluctuations), i.e., the thermal



equilibrium condition. This fact allows interpreting
Eq. (12) as a generalized zero law in the case where
the quantum and thermal effects are taken into ac-
count simultaneously. This law is valid at any tem-

dynamics: (%, k) — dynamics // Teoret. Mat. Fiz.
2009, v. 160, N 2, p. 369 (in Russian).

A.D. Sukhanov, O.N. Golubjeva. Quantum gen-

perature. eralization of an equilibrium statistical thermo-
dynamics: Effective macroparameters // Teoret.
References Mat. Fiz. 2008, v. 154, N 1, p. 185 (in Russian).

1. H. Umezava. Advanced Field Theory. Micro-,

Macro-, and Thermal Physics. N.-Y.: AIP, 1993.

A.D. Sukhanov, O.N. Golubjeva. On quantum
generalization of equilibrium statistical thermo-

V.V. Dodonov, V.I. Man’ko. Generalizations of
the uncertainty relations in quantum mechanics
// Trudy Fiz. Inst. Lebedev. 1987, v. 183, p. 5 (in
Russian).

CIIOCOB BBEJIEHUSI TEPMOJANHAMMWKN B KBAHTOBYIO TEOPUIO
O.H. I'oaybesa, A./]. Cyxaros

Mpsr npesiaraemM oaxo, HO3BOJILIONINI YCTPAHUTD PA3PhIB MEXKIY MAKPO- U MUKDPOOIUCAHUAMHA IIPUPOIBI
(T.€. MEXK/Iy CTATUCTUIECKON TEPMOIMHAMUKON U KBAHTOBOM MEXAHUKO ) HA OCHOBE HOBOI MOJIE/IM TEPMOCTA-
Ta B (DOpME XOJIOTHOTO ¥ TEIJIOTO BAKYyyMOB. B OT/imyne oT CTaHIapTHON KBAHTOBOM MEXAHUKHU MbI HCXOIAM
n3 MUKpoTeopunu B ¢opme h, k-TuHAMUKH, TPEeIIOXKEeHHON HamMu paHee. Ee konmemrmus, B obmeM ciaydae,
OCHOBAaHA HA WCIIOJIHb30BAHUK KOMILIEKCHOU BOJIHOBOM (byHKIWH, aMIIUTyaa U (da3a KOTOPOH 3aBUCAT OT
TeMIIepaTyPhI.

CIIOCIBb BBEJIEHHS{ TEPMOJMHAMIKN YV KBAHTOBY TEOPIIO
O0.M Ioaybesa, O./]. Cyxaros

Mu nporonyemMo mijxij, 1o J03BOJIAE YyCYHYTH PO3PUB MixkK Makpo- i Mikpoonucamu npupoiu (To6ro Mix
CTaTUCTUYHOIO TEPMOAMHAMIKOIO # KBAHTOBOIO MEXaHIKOI) HA OCHOBI HOBOI Mozesi rTepmocrara y ¢dopmi
XOJIOJTHOTO 1 Teroro BakyyMiB. Ha BiaMiny Bif cTaH1apTHOI KBAHTOBOI MEXAHIKY MU BUXOIUMO 3 MiKPOTEOPil
y dopwmi A, k-nuHaMiky, 3aMpONOHOBAHOI HAMY DaHiIIe. I KOHTIEMIIif, ¥ 3araJIbHOMY BUMAJIKY, 3aCHOBAHA Ha,

BUKOPHCTAaHHI KOMILIEKCHOI XBIIBbOBOI (pyHKIII, amMmiiTya it ¢gpasza skol 3aekarh Bif TeMIepaTypH.
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