NEUTRON IRRADIATION INFLUENCE ON THE SILICON VOLTAGE LIMITER PARAMETERS

A.Z. Rakhmatov\(^1\), M.Yu. Tashmetov\(^2\), L.S. Sandler\(^1\)

\(^1\)JSC Photon, 100047, Tashkent;
\(^2\)Institute of Nuclear Physics of the AS of RUz, 100214, Tashkent, s. Ulugbek

The influence of neutron irradiation on breakdown voltage \((U_{bd})\) and limitation voltage \((U_{lim})\) is investigated in silicon voltage limiter. The coefficient \(K_\rho\) is basic radiation parameter, forming dependences \(U_{bd} = f(F)\) and \(U_{lim} = f(F)\), which determines the dependence of basic charge carriers concentration in silicon from neutron fluencies. The mechanisms, which form the \(U_{lim}\) value after neutron irradiation are determined. On basis of obtained results analysis is proposed the model, which makes it possible to forecast changes in the breakdown voltage and limitation voltage, which occur as a result the neutron irradiation of voltage limiter.

INVESTIGATED SAMPLES AND EXPERIMENTAL TECHNIQUE

The VL were studied with voltage limitation \(U_{lim} = 50\) V. The construction of the investigated VL is schematically shown in Fig. 1 (two-layered protection of crystal surface by organic materials is not shown). The schematic construction of the active part of the voltage limiter crystals used in the experiment, some of its geometric dimensions (in millimeters) are presented in Fig. 2.

INVESTIGATIONAL samples were prepared with the use of various methods and materials. The most important physical characteristics of the VL structure and technological regimes fabrication will be given.

INVESTIGATION OF THE VL UNDER THE INFLUENCE OF RADIATION.

The influence of neutron irradiation on the breakdown voltage and limitation voltage of the VL was investigated. The coefficient \(K_\rho\) is basic radiation parameter, forming dependences \(U_{bd} = f(F)\) and \(U_{lim} = f(F)\), which determines the dependence of basic charge carriers concentration in silicon from neutron fluencies. The mechanisms, which form the \(U_{lim}\) value after neutron irradiation are determined. On basis of obtained results analysis is proposed the model, which makes it possible to forecast changes in the breakdown voltage and limitation voltage, which occur as a result the neutron irradiation of voltage limiter.

INTRODUCTION

In view of continuous enhancement of radio-electronic equipment (REE), increase in the number of carried out functions and decided tasks, the requirements for its reliability and failure-free operation sharply grew. One of the basic factors which decreases reliability and failure-free performance of REE is the influence of unregulated electric pulses such as atmospheric electricity, powerful switching noise, etc. Therefore the guaranteed protection of radio-electronic equipment (or its separate elements) of the influence of such pulses is one of the basic ways of its reliability growth. The overwhelming majority of known protection ways is that at the moment of action of “dangerous” electric pulse the protective element “cut away” the peaks of voltage pulses up to a safe level, and so the excess electrical energy is dissipated on protective element. One of perspective protective elements is the semiconductor voltage limiter (VL); it is the semiconductor diode, where the most important parameter is limiting voltage \((U_{lim})\). The voltage is the maximum voltage which provides overpowers protection of the REE [1]. If \(U_{lim} > 20\) V one can consider that the avalanche breakdown of \(p-n\) junction \([2]\) is the basic mechanism forming the \(U_{lim}\) value. In this case one of the parameters characterizing VL should be also avalanche breakdown voltage \((U_{bd})\). \(U_{bd}\) is the voltage since which voltage limiting at protected REE (or its element) begins. Limiting voltage \((U_{lim})\) and avalanche breakdown voltage are connected by the relation:

\[
U_{lim} = U_{bd} + I_{lim}(R_{dif} + R_{ser}),
\]

where \(I_{lim}\) is the current passing through VL when the overvoltage pulse appears; \(R_{dif}\) and \(R_{ser}\) - differential and series resistances of VL, respectively.

This current value characterizes of the excess electrical energy dissipated on VL in the “limitation” regime which does not lead of VL parameters to destruction or degradation. VL is in so-called “waiting” mode in the absence of an overvoltage pulse. The reverse voltage \((U_{rev})\) is fed to VL which equal to working voltage of the protected REE (or its element). \(U_{rev} < U_{bd}\) and reverse current \((I_{rev})\) of VL at this voltage characterizes power losses in VL when working in “waiting” mode.

This current value characterizes of the excess electrical energy dissipated on VL in the “limitation” regime which does not lead of VL parameters to destruction or degradation. VL is in so-called “waiting” mode in the absence of an overvoltage pulse. The reverse voltage \((U_{rev})\) is fed to VL which equal to working voltage of the protected REE (or its element). \(U_{rev} < U_{bd}\) and reverse current \((I_{rev})\) of VL at this voltage characterizes power losses in VL when working in “waiting” mode.

It is evident that the dependence of the VL parameters on the external influencing factors (EIF) (the most important of which are ambient temperatures \([2, 3, 4]\) and radiation) defines its efficiency as an element of electrical circuit under the actual conditions of REE operation.

Radiation influence on \(U_{bd}\) and \(I_{rev}\) of rectifier diode and stabiltron is described in variety of works (for example \([5-8]\)). At the same time radiation influence on \(U_{lim}\) and connection of this parameter with \(U_{bd}\) are not investigated practically. First of all it concerns neutron radiation which is the strongest factor influencing on semiconductors and semiconductor devices parameters. The present work is dedicated to study of neutron irradiation influence on limiting voltage and its connection with breakdown voltage under radiation influence.
They are the following:
– the area of p-n junction is \(\sim 9.3 \times 10^{-2} \text{ cm}^2 \);
– for crystal VL making n-type silicon with specific resistance of 0.3 Ohm cm was used;
– p+ and n+ layers were created by the boron and phosphorus diffusion, respectively;
– diffusion was carried out by the package method [2] at \((1250 \pm 5) ^\circ \text{C}\) during 1 h. At this diffusion method the distribution of the diffusing admixture is obeyed to the errors addition function [2].

The calculations carried by formulas [9] and initial data [2, 9] (diffusion coefficients, surface concentrations) showed that:
– p-n junction occurrence depth \(X_j \) (boron diffusion depth) is \(\sim (37 \pm 1) \mu \text{m} \);
– concentration gradient of impurity which creates p-n junction at \(x = X_j \) is \(\sim (1.0 \pm 0.2) \times 10^{20} \text{ cm}^{-4} \);
– n-n junction occurrence depth (phosphorus diffusion depth) is \(\sim 45 \mu \text{m} \).

Neutron irradiation of samples was carried out at the research reactor. Neutron fluence dosimetry was realized by the sulfuric indicators \(^{32}\text{S} \) (\(E > 3 \text{ MeV} \)) followed by reduction (using reactor spectrum) to the neutrons fluence with \(E \geq 100 \text{ keV} \) energy. The average neutrons energy was \(\sim 1.5 \text{ MeV} \) and dosimetry error \(\pm 20 \% \).

Table 1

<table>
<thead>
<tr>
<th>K1, cm²</th>
<th>K2, cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 \times 10^{-17}</td>
<td>7.1 \times 10^{-17}</td>
</tr>
</tbody>
</table>

So, \(K_1 \) and \(K_2 \) values are near each other and are distinguished less than 10 %. Themselves the values of breakdown voltage change on \(\sim 12...13 \% \) and of limiting voltage on \(\sim 20...23 \% \) even at the maximum neutron flux \(\sim 2 \times 10^{15} \text{ cm}^{-2} \). In Fig. 4 the \(\ln \left[U_{bd}(\Phi)/U_{bd}(0) \right] = f(\Phi) \) dependence, built according to experimental data, is presented. Fig. 4 shows that the \(U_{bd} \) dependence on neutron fluence \(\Phi \) is exponential depending on measure and reaction rate. The calculated values of the parameters \(U_{bd}(0) \) and \(U_{lim}(0) \) are given in all subsequent figures.
nature which is typical [6, 7], K_1 coefficient value in exponent and its independence of specific resistance of silicon which is used for creation of p-n junction, and from the structure is novel (within certain degree): according to [6, 7] this coefficient is $K_1 = 0.75 \, K_p$ where K_p is a constant of the specific resistance change of semiconductor under radiation influence.

It is known [5, 6, 10] that if neutron irradiation weakly influences on carriers mobility the relation occurs:

$$K_p = \frac{dn / d\Phi}{n_0},$$

where dn/Φ – carriers removal rate; n_0 – initial concentration of equilibrium basic current carriers.

In accordance with [6], for the initial silicon specific resistance of $p_0 \approx 2 \, \text{Ohm-cm}$ ($n_0 \approx 2.5 \times 10^{15} \, \text{cm}^{-3}$) dn/Φ can be within the limits of $1.5...4 \, \text{cm}^{-1}$. In this case the coefficient K_p must be $\approx (1.1\pm0.5) \times 10^{-15} \, \text{cm}^2$ and, therefore, according to [6,7] the coefficient K_1 must be $\approx (0.8\pm0.4) \times 10^{-15} \, \text{cm}^2$. But for the investigated VL samples this value is approximately by an order less and is $\approx 6.6 \times 10^{-17} \, \text{cm}^2$ (Fig. 5). It is the most probable that such discrepancy in the K_1 value is related to the fact that in the works [6, 7] the sharp p-n junctions were investigated but in the present work the p-n junctions with the linear distribution of impurity in the base (Fig. 5, curve 1) are examined.

The mentioned reason for discrepancy is probable sufficient because the authors [5] showed that for the diffusion p-n junctions U_{bd} practically does not change under irradiation, and they explained this effect by fact that at the large reverse voltages the quasi Fermi level in the space charge region of p-n junction falls below energy of the deep acceptor levels injected by irradiation. As a result the ionization degree of these deep levels becomes negligible and the properties of the space charge region are determined only by ionized initial donors and acceptors. However in the mentioned work the quantitative data were not given which confirm both the explanation and statement about the U_{bd} (Φ) weak dependence of diffusion diodes. Therefore the mechanisms will be considered in more detail which form the dependences described by formulas (2) and (3).

According to [3, 11, 12], the avalanche breakdown voltage of p-n junction is directly related to the width of space charge region (SCR) of the p-n junction:

$$U_{bd} \sim \left[\omega (U_{bd})\right]^m,$$

where $\omega (U_{bd})$ – VCR width at the reverse voltage equal to U_{bd}; m – exponent equal to ≈ 0.84 [11, 12].

Dependence (5), given in the literature, relates to the p-n junctions which were not being exposed to irradiation. It is very interesting to determine possibility of existence of similar dependence in the p-n junctions which were neutron irradiated. Note that the characteristics of the space charge region can undergo sufficiently noticeable changes as a result of radiation exposure. It is illustrated by Fig. 5: in this figure the typical volt-farad characteristics (VFCh) of the VL before and after irradiation are presented on the log-log scale [13]:

$$U_d = \frac{2kT}{3q} \ln\left(\frac{a^2 \varepsilon e_0 kT}{q n_i^2}\right),$$

where U_d – gradient potential; k – Boltzmann constant; T – absolute temperature; q – electron charge; a – impurity gradient which creates p-n junction; ε – silicon dielectric constant; n_i – intrinsic concentration of carriers in silicon. Fig. 5 shows that before irradiation the barrier capacitance of p-n junctions in VL is proportional to $\approx U_{bd}^{-0.33}$ (where U – reverse voltage), which is typical for linear p-n junction [13].

But after irradiation exponent has a tendency to decreasing. At increasing reverse voltage the slope angle of the $\lg \left[C (U) / C(0)\right]$ vs $\lg (U+U_d)$ dependences after irradiation approximates to the slope angle of these dependences before irradiation.

$$\ln\left[c (U) / c(0)\right] = f(U) \quad \text{(if } U_{rev} \approx U_{bd})$$

dependence is presented in Fig. 6.

According to [3, 11, 12], the avalanche breakdown voltage of p-n junction is directly related to the width of space charge region (SCR) of the p-n junction: $U_{bd} \sim \left[\omega (U_{bd})\right]^m$, where $\omega (U_{bd})$ – VCR width at the reverse voltage equal to U_{bd}; m – exponent equal to ≈ 0.84 [11, 12].

Dependence (5), given in the literature, relates to the p-n junctions which were not being exposed to irradiation. It is very interesting to determine possibility of existence of similar dependence in the p-n junctions which were neutron irradiated. Note that the characteristics of the space charge region can undergo sufficiently noticeable changes as a result of radiation exposure. It is illustrated by Fig. 5: in this figure the typical volt-farad characteristics (VFCh) of the VL before and after irradiation are presented on the log-log scale [13]:

$$U_d = \frac{2kT}{3q} \ln\left(\frac{a^2 \varepsilon e_0 kT}{q n_i^2}\right),$$

where U_d – gradient potential; k – Boltzmann constant; T – absolute temperature; q – electron charge; a – impurity gradient which creates p-n junction; ε – silicon dielectric constant; n_i – intrinsic concentration of carriers in silicon. Fig. 5 shows that before irradiation the barrier capacitance of p-n junctions in VL is proportional to $\approx U_{bd}^{-0.33}$ (where U – reverse voltage), which is typical for linear p-n junction [13].

But after irradiation exponent has a tendency to decreasing. At increasing reverse voltage the slope angle of the $\lg \left[C (U) / C(0)\right]$ vs $\lg (U+U_d)$ dependences after irradiation approximates to the slope angle of these dependences before irradiation.

$$\ln\left[c (U) / c(0)\right] = f(U) \quad \text{(if } U_{rev} \approx U_{bd})$$

dependence is presented in Fig. 6.
It is possible to see that for the studied VL the next relation is carried out with quite large reliability ($R^2 \approx 1$):

$$
\omega(\Phi) = \omega(0) \exp(K\Phi),
$$

(7)

where K – the coefficient equal to $7.1 \cdot 10^{-17}$ cm2 ($U_{rev} = U_{bd}$).

Dependence (7) is general for the studied type of VL and the obtained graph is described well by formula:

$$
\omega(\Phi) = \omega(0) \exp(7.1 \cdot 10^{-17} \Phi).
$$

(8)

Using data given in Fig. 4 and 6 it is possible to build the dependence $U_{bd}(\Phi)/U_{bd}(0) = f(\omega(\Phi)/\omega(0))$ (if $U_{rev} = U_{bd}$) which on the log-log scale is given in Fig. 7. It follows from this figure that after irradiation, in spite of a change in the structure of diffusion p-n junction, the avalanche breakdown voltage also obey of the universal dependence (5) with the quite large reliability ($R^2 = 0.91$), and therefore this formula may be used for calculating U_{bd} after irradiation.

It is of certain interest to confirm the experimental dependence (8) by calculations.

At that let us assume that both before irradiation, in entire range of reverse voltages, and after irradiation at the rather high reverse voltages ($U \sim U_{bd}$) of the SCR width can be calculated by the known formula for the graded p-n junction [13]:

$$
\omega = \left(\frac{12\varepsilon\varepsilon_0 (U + U_d)}{qa} \right)^{\frac{1}{3}},
$$

(9)

where a – impurity gradient which creates p-n junction.

If to consider that the p-n junction is formed by linear distribution of impurity: $N_0(x) = ax$, then after irradiation, according to formula (4) and its design model expressed by the formula (14), it is very close to the value K_p given at [5] for the value of the carriers removal rate of $1…4$ cm$^{-1}$. This value lies inside the interval of its possible values.

So, formula (14) may be used in practice for calculating the $\omega(\Phi)$ dependence and its following application for calculation and predicting the dependence $U_{bd} = f(\Phi)$ according to formula (5).

As can be seen from the calculation results (table 2), the values of the carriers removal rate, obtained from the experimental dependence $\omega(\Phi)$ (Fig. 6 and formula (8)) and also from its design model expressed by the formula (14), it is very close to the value K_p given at [5] for the value of the carriers removal rate of $1…4$ cm$^{-1}$. This value lies inside the interval of its possible values.

Let us consider in more detail the dependence of limiting voltage (U_{bd}) upon neutron fluence. In accordance with formula (1) the value of this parameter is related by linear dependence with breakdown voltage, and the relation is carried out with quite large reliability ($R^2 = 0.91$), and therefore this formula may be used for calculating U_{bd} after irradiation. The value of this parameter varies from 387 to 3300 depending on the specific resistance and neutron spectrum [10].

Differentiating (10) by the $\omega(\Phi)$ coordinate we obtain:

$$
\frac{dN(x,\Phi)}{dx} = a(1 + 0.77 K_p \Phi) \exp(-K_p \Phi).
$$

(12)

If $0.77 K_p \Phi < 1$ (it is not difficult to see that this condition is carried out practically for entire range of neutron fluences used in the experiment), then:

$$
\frac{dN(x,\Phi)}{dx} = a \exp(-0.23 K_p \Phi).
$$

(13)

Using (13) and (7), it is easy to obtain:

$$
\frac{\omega(\Phi)}{\omega(0)} = \exp(0.077 K_p \Phi),
$$

(14)

at that $U_{rev} = U_{bd}$.

By comparing (8) and (14) one can see that these exponential dependences are identical and experimental value of the coefficient is $K_p \approx 0.9 \cdot 10^{-15}$ cm2. In this case the question arises: to what initial (before the irradiation) carriers concentration can be related this coefficient value. In our opinion, it should be related to the average carrier concentration that forms of VCR width in n-region (ω_n). In the first approximation the average carriers concentration is equal to $n(\omega_n) = 2$, where $\omega_n = VCR$ width in the n-region. The results of $\omega_n, n(\omega_n)$ and K_p calculation are presented in table 2.

<table>
<thead>
<tr>
<th>Name of calculated value</th>
<th>Calculation result for VL with $U_{rev} \approx 50$ V</th>
<th>Calculation procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total width of VCR (ω_n), cm</td>
<td>$2.5 \cdot 10^4$</td>
<td>[14]</td>
</tr>
<tr>
<td>Width of VCR in n-region (ω_n), cm</td>
<td>$1.36 \cdot 10^4$</td>
<td>[14]</td>
</tr>
<tr>
<td>Carriers concentration (ω_n), cm3</td>
<td>$8.2 \cdot 10^5$</td>
<td>[12]</td>
</tr>
<tr>
<td>Average concentration of main carriers in ω_n cm3</td>
<td>$4.1 \cdot 10^5$</td>
<td>$n_{av} = n(\omega_n)/2$</td>
</tr>
<tr>
<td>Carriers removal rate, cm$^{-1}$</td>
<td>3.7</td>
<td>By formula (4) at carriers removal rate of 2.5 cm$^{-1}$</td>
</tr>
</tbody>
</table>

ISSN 1562-6016. BAHT. 2012. №5(81)
differential resistance of p-n junction in limitation regime and series resistance of semiconductor structure in this regime. As already mentioned, the limitation regime is characterized by the current of $I_{\text{lim}} = 50 \text{ A}$ for VL. Apriori one can state that in this case the p-n junction is located in “deep” breakdown, and in accordance with the Miller formula [9]:

$$I_{\text{lim}} \approx M = \left(1 - \frac{U}{U_{\text{bd}}} \right)^C,$$

(15)

where M – coefficient of carriers multiplication; $C = 5$ for the silicon p-n junction; I_R – reverse current of p-n junction if $U << U_{\text{bd}}$.

We will obtain from (15) that:

$$R_{\text{df}} = \frac{U_{\text{bd}}}{C I_{\text{lim}}} \left(\frac{I_R}{I_{\text{lim}}} \right)^{C-1}.$$

(16)

For the considered regime of limitation and for real values of reverse currents in the waiting regime ($I_R \approx 5 \times 10^{-5} \text{ A}$) we obtain that $R_{\text{df}} \approx 10^{-4} \text{ Ohm}$ and so in the formula (1) the R_{df} value can be neglected. As regards the value of series resistance (R_{series}) in formula (1), it consists of two parts [16]. The first part is the resistance the part of SCR in which impact ionization does not occur. This part is named “transit-time region” and, in accordance with [15], its resistance (R_{ttr}) is determined by the relation:

$$R_{\text{ttr}} = \frac{(\omega - \omega_{\text{sat}})^2}{2e\varepsilon_0 S V_{\text{sat}}},$$

(17)

where ω_{sat} – width of the part of VCR in which impact ionization occurs, S-area of p-n junction; V_{sat} – saturation rate of carriers in silicon, which, in accordance with [14], is 10^7 cm/s. The second part is the ohmic resistance of neutral base of VL:

$$R_{\text{base}} = \rho_{\text{ab}} \frac{d_{\text{ab}} - \omega}{S},$$

(18)

where ρ_{ab} – specific resistance and d_{ab} – width of neutral base.

Note that ω_{sat} value calculating for the diffusion p-n junctions is realized by various expressions for each concrete case but the results of ω_{sat} calculating are single-valued for the sharp p-n junctions [16].

At the same time taking into account that R_{df} and, therefore, voltage drop across the ω_{sat} section is negligibly little, it follows from formula (1):

$$U_{\text{lim}} - U_{\text{bd}} = I_{\text{lim}} (R_{\text{base}} + R_{\text{ttr}}),$$

(19)

where R_{base} and R_{ttr} are determined by formulas (17) and (18), respectively.

According to formulas (17–19), using initial (before irradiation) experimental values of $U_{\text{lim}} - U_{\text{bd}}$, the values of SCR width ω (for $U=U_{\text{bd}}$) calculated by formula (9), the neutral base width (d_{ab}) and its specific resistance (ρ_{base}), one can calculate the ω_{sat} value. Calculation gave $\omega_{\text{sat}} = 1.3 \times 10^{-4} \text{ cm}$. It is interest to note that in [16] for sharp p-n junctions it is obtained $\omega_{\text{sat}} = 0.5 \times 10^{-6}$; at that

\[
\begin{array}{|c|c|}
\hline
\text{Neutron flux ()} & \text{Voltage drop at the transit-time part (} U_{\text{lim}} \text{), V} \\
\text{cm}^2 & \\
\hline
0 & 0.7 \\
1.0 \times 10^{14} & 0.72 \\
3.5 \times 10^{14} & 0.72 \\
7.3 \times 10^{14} & 0.85 \\
1.3 \times 10^{15} & 0.93 \\
1.6 \times 10^{15} & 1.1 \\
2.0 \times 10^{15} & 1.2 \\
2.5 \times 10^{15} & 1.2 \\
\hline
\end{array}
\]

Using calculation data given in table 3 and experimental dependences $U_{\text{bd}}(\Phi)$ and $U_{\text{lim}}(\Phi)$ (Fig. 3) it is possible to find the dependence of voltage drop at neutral base (U_{base}) on neutron fluence:

$$U_{\text{base}}(\Phi) = I_{\text{lim}} \frac{R_{\text{base}}}{U_{\text{bd}}(\Phi)} = U_{\text{lim}}(\Phi) - U_{\text{bd}}(\Phi) - U_{\text{ttr}}(\Phi).$$

(20)

The dependence $\ln[U_{\text{base}}(\Phi)/U_{\text{base}}(0)]$ on neutron fluence (Φ) is presented in Fig. 8. The similar method of the dependence representation permits to exclude the poorly controlled values of d_{ab} and ω and to bring them to the dependence $\rho_{\text{base}}(\Phi)/\rho_{\text{base}}(0)$ by (18). Fig. 8 shows that for the investigated VL the relation $U_{\text{base}}(\Phi)/U_{\text{base}}(0)$ and consequently the relation $\rho_{\text{base}}(\Phi)/\rho_{\text{base}}(0)$ exponentially depend on neutron flux.
Fig. 8. Dependence $U_{\text{limit}}(\Phi)/U_{\text{limit}}(0)$ on neutron fluence

At that, for the VL $K_p = 3.8\times10^{-16}\text{ cm}^2$. This value of the coefficient K_p corresponds to the carriers removal rate under neutron irradiation (4) which is 7.6 cm^{-1} for n-type silicon used when making VL with $\rho_{\text{base}} \approx 0.3\text{ Ohm}\cdot\text{cm}$. This carriers removal rate value is sufficiently near literature data [17]: $dn/d\Phi \approx 9\text{ cm}^{-1}$ for silicon with $\rho \approx 0.3\text{ Ohm}\cdot\text{cm}$, and it permits to consider that the proposed calculation procedure can be used for predicting of the radiation resistance U_{limit} – the most important parameter of VL. It is reasonable that for the similar prediction it is necessary the knowledge of the structure of p-n junction of VL, the electro physical properties of silicon on which it is prepared and also the K_p value of used silicon (or the carriers removal rate under irradiation).

CONCLUSIONS

As a result of study of neutron irradiation influence on the breakdown voltage (U_{bd}) and the limiting voltage (U_{limit}) of the silicon voltage limiters the following is established:

– the experimental dependences $U_{\text{bd}} = f(\Phi)$ and $U_{\text{limit}} = f(\Phi)$ for VL with the 50 V limiting voltage before irradiation are obtained;

– it is shown that the relation $U_{\text{bd}}(\Phi)/U_{\text{bd}}(0)$ practically does not depend on the breakdown voltage value of VL before irradiation;

– it is shown that in the relation $U_{\text{bd}}(\Phi)/U_{\text{bd}}(0) \approx [\omega(\Phi)/\omega(0)]^m$ (if $U_{\text{limit}} \approx U_{\text{bd}}$) the exponent “m” does not change after irradiation and is equal to ~ 0.84;

– it is shown that the coefficient K_p is the basic radiation parameter which forms the dependences $U_{\text{bd}} = f(\Phi)$ and $U_{\text{limit}} = f(\Phi)$ which determines the dependence of the concentration of basic charge carriers in silicon on neutron fluence;

– mechanisms which form the U_{limit} value after irradiation are determined;

– the model is suggested and is calculated which takes into account “smoothness” of the investigated p-n junctions and which makes it possible to predict changes in the breakdown voltage and limiting voltage which occur as a result of neutron irradiation of VL.

The authors are grateful to Prof. Karimov M, Dr. Tursunov N. and Mr. Ismatov N. to work results discussion.

Work is executed within the framework of F2-FA-0-11372 grant of Committees on Coordination of Development Sciences and Technology.

REFERENCES

Статья поступила в редакцию 28.05.2012 г.
ВЛИЯНИЕ НЕЙТРОННОГО ОБЛУЧЕНИЯ НА ПАРАМЕТРЫ КРЕМНИЕВЫХ ОГРАНИЧИТЕЛЕЙ НАПРЯЖЕНИЯ

А.З. Рахматов, М.Ю. Таишетов, Л.С. Сандлер

Влияние нейтронного облучения на напряжение пробоя \(U_{проб} \) и напряжение ограничения \(U_{огр} \) исследовано в кремниевых ограничителях напряжения. Коэффициент \(K_\rho \) является основным радиационным параметром, формирующим зависимости \(U_{прб} = f(\Phi) \) и \(U_{огр} = f(\Phi) \) и определяющим зависимость концентрации основных носителей заряда в кремнии от флюенса нейтронов. Определены механизмы, формирующие величину \(U_{огр} \) после нейтронного облучения. На основе анализа полученных результатов предложена модель, позволяющая прогнозировать изменения напряжения пробоя и напряжения ограничения, которые происходят в результате нейтронного облучения ограничителя напряжения.

ВПЛИВ НЕЙТРОННОГО ОПРОМІНЕННЯ НА ПАРАМЕТРИ КРЕМНІЄВИХ ОБМЕЖУВАЧІВ НАПРУГИ

А.З. Рахматов, М.Ю. Таишетов, Л.С. Сандлер

Вплив нейтронного опромінення на напругу пробою \(U_{проб} \) і напругу обмеження \(U_{обм} \) досліджено в кремнієвих обмежувачах напруги. Коefфіцієнт \(K_\rho \) є основним радіаційним параметром, що формує залежності \(U_{прб} = f(\Phi) \) і \(U_{обм} = f(\Phi) \) і визначає залежність концентрації основних носіїв заряду в кремні від флюенса нейтронів. Визначені механізми, що формують величину \(U_{обм} \) після нейтронного опромінення. На основі аналізу отриманих результатів запроponована модель, що дозволяє прогнозувати зміни напруги пробою і напруги обмеження, які відбуваються в результаті нейтронного опромінення обмежувача напруги.