USING OF NEW POSSIBILITIES OF FERMI
ARCHITECTURE BY DEVELOPMENT OF GPGPU
PROGRAMS

V.A. Dudnik,” V.I. Kudryavtsev, S.A. Us, M.V. Shestakov
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received December 11, 2012)

Description of additional functions of hardware and software, which are presented in the structure of new architec-
ture of FERMI graphic processors made by company NVIDIA| was given. Recommendations of their use within the
realization of algorithms of scientific and technical calculations by means of the graphic processors were given. Appli-
cation of the new possibilities of FERMI architecture and CUDA technologies (Compute Unified Device Architecture
- unified hardware-software decision for parallel calculations on GPU) of NVIDIA Company was described. It was
done for time reduction of applications’ development which is using possibilities of GPGPU for acceleration of data

processing.

PACS: 89.80.+h, 89.70.4-c, 01.10.Hx

1. INTRODUCTION

CUDA architecture, which has appeared several years
ago, provided an opportunity to use for programming
of calculation tasks for GPU the same program tools
as for usual CPU: C-language, Fortran, Open CL or
similar. Use of GPU computing powers for the sci-
entific and technical calculations has ceased to be a
complete exotic, but still some difficulties both in re-
alization of effective computing algorithms on GPU
and in their using are remained. Major lack for GPU
use as fast calculators was an absence of calculations’
support with double accuracy and finding and cor-
rection of memory’s errors mechanisms.

However the greatest difficulties have arisen dur-
ing the debugging of programs using GPU. CUDA
architecture has given conventional debugging tools
for MS Visual Studio: the task of points of inter-
ruption, viewing of content of memory areas, status
of parallel flows, etc. by means of familiar Locals
windows, Watch, Memory and Breakpoints, but it is
only in a mode of emulation of GPU by the means
of CPU. Search of synchronization’s errors, analysis
of various exclusive situations (division by zero, over-
flow, etc.) was considerably complicated also by the
fact that parallel sites of GPU program in the emula-
tor were carried out consistently, besides operations
of calculation with a floating point on GPU and on
CPU were carried out a little differently.

In 2009 NVIDIA developers have presented the
further development of CUDA platform - FERMI
architecture. Fermi architecture initially implies us-
ing of graphic processors not only for processing of
computer graphics. NVIDIA positioned the new ar-

chitecture mainly on the market of high performance
computing that assumed both the high speed of set-
tlement operations and the high reliability with the
high convenience of programming.

2. NEW HARDWARE FUNCTIONS OF
FERMI ARCHITECTURE

Supporting of calculations of double precision float-
ing point realized in the new architecture was one of
key requirement of the market of high-efficiency cal-
culations. It is necessary to notice that the graphic
processor of previous generation GT200 also could be
used for the calculations of double precision floating
point but its productivity need to be better for such
operations.

Besides in FERMI architecture has been realized
the mechanism of errors’ finding and correction in op-
erative memory and subsystems of a cache-memory
(ECC Error Correcting Code is a special technology
of operative memory which allows to find out and
correct incorrect value of one bit on every 8 bits of
transferred data). It has allowed achieving compa-
rable with CPU fault tolerance and reliability of the
work of computing algorithms. Usual graphic proces-
sors did not require these functions and were satisfied
with the calculations of single precision floating point.

An essential obstacle for the realization on GPU
complex computing algorithms was the structure of
GP200 memory which did not allow organizing the
effective internal manager of memory and using of
data allocation as required in the process of calcula-
tions. As a rule it was necessary to reserve all GPU

*Corresponding author. E-mail address: vladimir-1953@mail.ru

ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).

Series: Nuclear Physics Investigations (60), p.285-288.

285



memory within start of GPGPU-a thread of the pro-
gram, and to release only after its end. Emergence
in FERMI architecture of the common L2-cache has
considerably accelerated (in ten times) atomic oper-
ations with the memory. It gave the opportunity to
organize fast enough internal manager of memory al-
locating memory of each thread during work. It has
allowed realizing functions of management of mem-
ory malloc and free of programming C language
that has essentially accelerated performance of the
algorithms using dynamic data structures.

Access to a global memory also has been im-
proved in Fermi. The global video memory has been
divided into six banks in G200. It was necessary to
seek compliance with the various banks for achieving
of the maximal speed and paralleling of performance
of reading inquiries. This restriction is removed in
FERMI and the access to the local memory of a
multiprocessor is accelerated. The local memory of
the multiprocessor is divided into the banks. The
common address space for all memory of CPU and
GPU realized in FERMI architecture allows unit-
ing in one address space all visible memory for the
thread (memory of the multiprocessors and visible
global memory (Fig.1)).

Unified Virtual Addressing

UVA

GPUO
Memory

Without UVA

GPUO
Memory

GPU1
Memory

System
Memory

System
Memory

Fig.1. Unified virtual addressing.

Management of the access to the global memory is
improved. Cache inquiries about the memory are
united for warp (32 strings), go on 128 bites with
caching in L1 within sequential data access in the
global memory and included L1. Thus data for the
following warp will be already in L1 with a high
probability that allows to minimize a quantity of ma-
nipulations to the global memory (Fig. 2).

2 transactions by 128B

Fig.2. Management of the access to the global
memory (caching is off)

The cache inquiries to the global memory always go
on 32 bites at switched off L1 that it is more prefer-
able to unloaded access to the memory (for example,
at realization of table functions)(Fig. 3).

286

32 transactions by 32B instead 32 x 128B

Fig.3. Management of the access to the global
memory (caching is on)

The opportunity of recursive functions’ using, ap-
peared in FERMI architecture, has allowed to carry
more complex calculations on GPU and to reduce the
quantity of rather slow operations of exchange with
the operative memory on trunk PCI Express.

Two interfaces for copying allow accelerating
practically twice the data exchange due to simulta-
neous performance of data copying from the memory
of the multiprocessors CPU in GPU and from GPU
into the CPU memory. The simultaneous optimized
performance of several kernels realized in FERMI ar-
chitecture allows to organize the simultaneous perfor-
mance some of CUDA-functions of one application
if one CUDA-function cannot completely load the
computing capacities of the GPU-device. It allows
loading more optimally GPU (Fig.4), for example, it
allows compensating long time of data transmission
on trunk PCI due to overlapping operations of data
loading of one task and calculations performance for
another.

Fig.4. Several kernels realized in FERMI
architecture.

3. POSSIBILITIES OF FERMI
ARCHITECTURE FOR DEVELOPMENT
AND DEBUGGING OF APPLICATIONS

Hardware possibilities of FERMI architecture have
allowed to NVIDIA experts to develop the new pro-
gram decision for perfection of the processes of cre-
ation and debugging of applications CUDA — the
NVIDIA NEXUS.

Supporting of C language ++ became the impor-
tant innovation in NVIDIA NEXUS. Earlier a code
for CUDA can be written only on C. Besides, the in-
teraction between mechanisms of graphics processing
and means for the performance of calculations of a
general purpose is improved. Now libraries Direct3D
9, 10 and 11, and also library OpenGL can be used
for data processing through the CUDA mechanism.

The opportunity of use for the applications’ devel-
opment of OpenCL means (the open standard of cal-
culations with use of the graphic processors) is added.
Perhaps, the most essential innovations realized in



NVIDIA NEXUS are the possibilities of high-grade
debugging of applications on GPU’s hardware. Ear-
lier it was necessary to use for debugging the GPU
program emulator. Using NVIDIA NEXUS for Mi-
crosoft Visual Studio will allow avoiding the majority
of existed problems of debugging and due to this to
increase the speed of applications’ development. We
consider the possibilities of debugging appeared in
NEXUS in more details.

Nexus Debugger supports debugging of the code
on CUDA C and HLSL directly on GPU equipment
in working space Visual Studio 2008 and includes the
following functions:

e The Information page on CUDA - gives
the full information about the status of CUDA
starts in the user application. Users can filter
and receive the detailed information about ex-
clusive situations, points of interruption, facts
added into the database, errors of MMU. It is
easy to be switched for debugging a problem.

¢ CUDA Warp Watchprovides more effective
way of navigation on resident streams and visu-
alization of a status of the streams at the place
of deformation.

e Supports graphics and GPU comput-
ing.Simple debugging of shaders or programs
of scientific and technical calculations directly
on GPU.

e Parallel-aware— debugging of applications us-
ing thousands of the data processing streams or
graphic primitives.

e Source breakpoints — points of interruption
at any place (with using of a hardware estima-
tion of conditions).

e Memory inspection- the direct control and
display of GPU memory using Visual Studio
Memory Window.

e Data breakpoints — breakpoint on record at
any place of memory.

e Memory Checker— breakpoint out of limits
of the allocated memory.

e Trace — recording of actions and events exe-
cuted on CPU and GPU on chosen correlated
line. Includes:

CUDA C, DX10, Open GL and Cg API calls;
GPU - Host memory transfers;

GPU workload executions;

CPU core, thread and process events;

Custom user events - Mark custom events or
time ranges using a C APIL

Nexus Analyzer— Nexus Analyzer supports track-
ing and GPU profiling of applications, collecting and
the analysis of the information of the performance
level of the kernel including hardware counters of

productivity. Now traced loadings can consider de-
pendences between processes and stacks of calls that
allow to developers to analyze completely GPU load-
ing, working of corresponding API calls and basic
code of interested GPU process. Thus, the means
of profiling CUDA FERMI allow understanding de-
veloper’s problems of the productivity on the basis of
the analysis of following factors:

e a deviation of flows or branching of the code;
e statistics of manipulations to the memory;

e statistics of the reasons of delays of the perfor-
mance of the code;

e achieved levels of the performance of data
processing in FLOPS.

4. SUMMARY

Use of Fermi architecture allows increasing the
productivity of the computing applications using
GPU for the acceleration of scientific and technical
calculations.

Appeared in structure of software CUDA -
NEXUS means of the debugging (allowing to debug
the application directly on GPU equipment) sharply
reduce time of debugging and reduce probability of
occurrence of ”floating errors” in already debugged
program.

Means of Nexus Analyzer profiling give to the
developers of applications the information allowing
within the development and debugging of applica-
tions to achieve maximal use of computing functions

of GPU.

References
1. A.Zubinsky. NVIDIA CUDA: unification
schedules and calculations. May, 8-th, 2007

(http://itc.ua/node/27969).

2. D.Luebke. Graphics CPU-not only for graphics,
(http://www.osp.ru/os/2007/02/4106864/).

3. D.Luebke, G.Humphreys. How GPUs Work//
IEEE Computer, February 2007. IEEE Com-
puter Society.

4. V.Dudnik, V.Kudryavtsev, T.Sereda, S.Us,
M. Shestakov. Using of opportunities of graphic
processors for acceleration of scientific and tech-
nical calculations. //PAST, 2009, N3, p. 120-123.

5. V.Dudnik, V.Kudryavtsev, T.Sereda, S.Us,
M. Shestakov. Application of opportunities of
tool system ”CUDA” for programming graphic
processors in tasks of scientific and technical cal-
culations.//PAST, 2009, N5, p. 159-165.

6. V.Dudnik, V.Kudryavtsev, T.Sereda, S.Us,
M. Shestakov. Sooftware development tools using
GPGPU potentialities.//PAST, 2011, N3, p.99-
103.

287



7. V.Dudnik, V.Kudryavtsev, T.Sereda, S.Us, monochrome half-tone pictures //PAST, 2013,
M. Shestakov. Use of a GPGPU means for the N3, p.282.
development of search programs of deffects of

N CIIOJIb30BAHUE HOBBIX BO3MOYKHOCTEN APXUTEKTYPEI FERMI ITPU
PA3BPABOTKE GPGPU ITPOTPAMM

B.A. /Tyonux, B.U. Kydpsasues, C.A. Ye, M.B. Illecmaxos

[IpuBeneno onucanue JIOTOJHUTEIBHBIX BO3MOXKHOCTEH allapaTHBIX W IIPOIPAMMHBIX CPEICTB, MPEICTaB-
JIEHHBIX B COCTaBe HOBOI apxurekTyphl rpadudeckux mnporeccopoB FERMI kommanuu NVIDIA. Tanbr pe-
KOMEHJIAIINN WX WCIIOJb30BAHUS IIPU PEATU3AINY AJTOPUTMOB HAYIHO-TEXHUIECKUX DPACIETOB CPEICTBAME
rpadudeckux mporneccopos. OnucaHo mpuMeHeHe HOBBIX Bo3MoxKkHOcTel apxurekTypbl FERMI u Texmoso-
run CUDA xomnanun NVIDIA (Compute Unified Device Architecture — yandunmposaHHoro nporpaMMHo-
AIIIAPATHOrO PEIIeHUs JIIs Iapasiebubix Bhraucaenuit na GPU) g cokpaluenusi BpeMenu pa3paboTKu
npuwioxkeHuit, ncnosb3ytonmx Bozmoxkuaoctu GPGPU g yckopenusi o6paboTKy JTaHHBIX.

BUKOPUCTAHHS HOBUX MOXKJIMBOCTEN APXITEKTYPU FERMI ITPU
PO3POBIII GPGPU ITPOTPAM

B.O. /Tyonix, B.1. Kydpasues, C.0. Yc, M.B. Illecmaxos

[IpuBeneno ommc MOJATKOBAX MOXKJIMBOCTEH alapaTHUX 1 MPOrPAMHHUX 3aCODiB, IO MPEICTABJIEH] y CKJIAJI
Hsl [IPY peaJsiizalil aJIrOPpUTMIB HAYKOBO-TEXHIYHIX PO3PaXyHKIB 3acobamu rpadidaux mpoiecopis. OmucaHo
3acToCyBaHHs HOBUX MOKJjmBocTeil apxirekrypu FERMI i rexnosorii CUDA kommnanii NVIDIA (Compute
Unified Device Architecture — yuidpikoBaHOrO IporpaMHO-anapaTHOrO PIlleHHs JJIs TapajebHIX 00urc-
genb Ha GPU) jyis ckopoueHHsI 4acy po3poOKH JOAaTKIB, 10 BUKOpUCTOBYIOTH MoxKuBocti GPGPU g
MIPUCKOPEHHS OOPOOKM TAHUX.

288



