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The energy of transversal motion of relativistic charged particles in the uniform potential of atomic strings of a crystal

could be quantized. The energy levels of electrons axially channeled in the system of parallel [110] atomic strings of

silicon crystal are obtained. The distribution of distances between neighbor energy levels in the quasi-classical region,

where the levels density is high, is agreed with quantum chaos theory predictions.
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1. INTRODUCTION

Axial channeling of fast electrons in crystal is a rather
simple example of the situation where the classical
dynamics could be both regular and chaotic. Par-
ticularly, the motion in the uniform potential of two
neighboring [110] atomic strings of the diamond-like
crystal (Fig. 1) above the saddle of the potential will
be predominantly chaotic [1].

One of the main statements of the quantum chaos
theory [2] is that the statistical properties of the en-
ergy level arrays for regular and chaotic (in classi-
cal limit) systems are dramatically different. Par-
ticularly, the eigenenergies of the quantum system,
which classical counterpart demonstrates the chaotic
behavior, have a tendency to mutual repulsion. This
behavior leads to Wigner distribution of the distances
s between each two successive eigenenergies:

p(s) =
πs

2D2
exp

(
− πs2

4D2

)
, (1)

where D is the average inter-level distance for con-
sidered energy range. For the regular motion this
correlation between energy levels is absent that leads
to exponential form of nearest-neighbor distribution
(NND) of eigenenergies:

p(s) =
1

D
exp

(
− s

D

)
. (2)

The goal of the present paper is to test that state-
ment as applied to the problem of axial channeling in
the field described below.
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Fig.1. Electron potential energy in the field of
uniform potentials of the two neighbor [110] atomic
strings of the silicon crystal

2. RESULTS AND DISCUSSION

The uniform string potential could be approxi-
mated [1] as follows

U1(x, y) = −U0 ln

(
1 +

βR2

x2 + y2 + αR2

)
, (3)

where for the [110] atomic string of silicon U0 =
60 eV, α = 0.37, β = 3.5, R = 0.194 Å (Thomas-
Fermi radius); the least distance between two paral-
lel strings a/4 = 5.431/4 Å (where a is the lattice
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period). So, the uniform potential, in which the elec-
tron’s transverse motion takes a place, will be de-
scribed by the two-well function (see Fig. 1)

U(x, y) = U1(x, y + a/8) + U1(x, y − a/8) (4)

(we neglect the far-away strings influence). The elec-
tron finite motion in this field is known as axial chan-
neling [1].

Conservation of the electron’s momentum com-
ponent parallel to atomic strings p∥ leads to reduc-
tion of quantum description of the axial channel-
ing to the solution of two-dimensional Schrödinger
equation in which the parameter E∥/c

2 (where E∥ =√
m2c4 + p∥c2 is the energy of longitudinal motion)

plays the role of the particle’s mass.

To find the transverse motion energy levels in the
potential well (4) we use the spectral method [3]-[5],
which has been successfully tested for the channeling
problem in [6], [7].

The potential well (4) has two planes of mirror
symmetry: x = 0 and y = 0. Hence, every eigenstate
of the electron in the potential (4) belongs to one of
four classes of wave function (WF) symmetry:{

Ψ++(−x, y) = Ψ++(x, y),

Ψ++(x,−y) = Ψ++(x, y),
(5)

{
Ψ+−(−x, y) = Ψ+−(x, y),

Ψ+−(x,−y) = −Ψ+−(x, y),
(6)

{
Ψ−+(−x, y) = −Ψ−+(x, y),

Ψ−+(x,−y) = Ψ−+(x, y),
(7)

{
Ψ−−(−x, y) = −Ψ−−(x, y),

Ψ−−(x,−y) = −Ψ−−(x, y).
(8)

The statistical properties of transverse motion
eigenenergies should be investigated separately for
each of these four classes [2].
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Fig.2. NND for four different subranges of −23 ≤ E⊥ ≤ −3 eV range (−23..−3, −13..−3, −8..−3,
and −5..−3 eV from upper to lower rows, respectively) and four WF symmetries (Ψ−+, Ψ+−, Ψ++, and
Ψ−− from left to right columns, respectively). The solid curves are Wigner distributions (1) with D values
calculated for the corresponding subrange, the dashed curves are exponential (2) ones

Below we will discuss the properties of energy lev-
els E⊥ of transversal electron motion with longitudi-
nal energy E∥ = 500 MeV for −23 ≤ E⊥ ≤ −3 eV en-
ergy range where the quantum chaos should manifest
itself. The corresponding calculation algorithm had
been designed in MATLAB [8] environment, however
further it had been ported into Unix environment us-
ing C language and GSL [9], FFTW [10] libraries.
We had been forced to do that because Unix FFTW
implementation is up to date, so uses fast instruc-
tion sets SSE2 and AVX. This allows us to reach
the energy level resolution better than 0.004 eV dur-
ing yet reasonable calculation time (approximately 65
days per 10 eV range per WF symmetry class using

384×384 coordinate lattice for E∥ = 500 MeV on the
single core of Intel Core i7–2600 3.4 GHz processor
with AVX).

First of all we plot the NND for the whole calcu-
lated range (Fig. 2, upper row).

As we can see, the distribution has maximum as
expected according to (1), however its parameters are
differ from the theoretically predicted ones. This is
because the average inter-level distanceD is increased
linearly with falling into potential well (Fig. 3). This
increase is fast enough to substantially raise the con-
tribution of big s. Consequently the variance of D is
too big to assume the inter-level spacing is described
correctly by the only one parameter.
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Fig.3. Energy levels number (upper row) and average inter-level distance D (lower row) for four WF
symmetries: Ψ−+, Ψ+−, Ψ++, and Ψ−− (from left to right columns)

However the agreement of calculated data and
Wigner distribution is increased at narrowing the
considered energy range (see Fig. 2). For −5 ≤ E⊥ ≤
−3 eV energy range the agreement is confirmed by fit
of the calculated NND data using the maximum like-

lihood method by the Wigner distribution with D as
a free parameter (Fig. 4). The D values derived from
the calculated data and obtained as a free parameter
of the data fit (as well as χ2 values for both cases)
are summarized in table.

0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

s ,  eV

N
um

be
r 

of
 le

ve
ls Ψ

−+

0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

s ,  eV

N
um

be
r 

of
 le

ve
ls Ψ

+−

0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

s ,  eV

N
um

be
r 

of
 le

ve
ls Ψ
++

0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

s ,  eV

N
um

be
r 

of
 le

ve
ls Ψ

−−

Fig.4. Inter-level distances distribution on the −5 ≤ E⊥ ≤ −3 eV range (histograms), Wigner distribution
with actual D values (solid curves), Wigner data fit by maximum likelihood method (dashed curves) for four
WF symmetries
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Comparison of χ-square and average inter-level distance values derived from calculated data (χ2
t , Dt) and

as fit results (χ2
f , Df )

WF symmetry χ2
t Dt, eV χ2

f Df , eV

Ψ−+ 19.3802 0.0146 17.0507 0.0152
Ψ+− 15.4161 0.0148 15.6688 0.0146
Ψ++ 9.6547 0.0144 8.7188 0.0147
Ψ−− 4.5651 0.0150 4.7757 0.0149

3. CONCLUSIONS

The quantum mechanical problem of the charged par-
ticle interaction with the uniform potential of two
neighboring atomic strings in crystal is considered.

The procedure for computing the energy levels
of the particle transversal motion using the spectral
method is designed. This procedure is used to study
the quantum chaos manifestations in the considered
system.

The inter-level distances distribution is well de-
scribed by the Wigner distribution, however only
if the variance of mean inter-level distance is small
enough on the considered energy range.
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ÑÒÀÒÈÑÒÈ×ÅÑÊÈÅ ÑÂÎÉÑÒÂÀ ÓÐÎÂÍÅÉ ÝÍÅÐÃÈÈ Â ÊÂÀÍÒÎÂÎÉ ÒÅÎÐÈÈ

ÀÊÑÈÀËÜÍÎÃÎ ÊÀÍÀËÈÐÎÂÀÍÈß

Í.Ô.Øóëüãà, Â.Â.Ñûùåíêî, À.Þ.Èñóïîâ

Ïðè êàíàëèðîâàíèè áûñòðûõ çàðÿæåííûõ ÷àñòèö â êðèñòàëëå ìîæåò èìåòü ìåñòî êâàíòîâàíèå ýíåð-
ãèè ïîïåðå÷íîãî äâèæåíèÿ ÷àñòèöû â íåïðåðûâíûõ ïîòåíöèàëàõ àòîìíûõ öåïî÷åê. Â ïðåäëàãàåìîé
ðàáîòå íàéäåíû óðîâíè ýíåðãèè ýëåêòðîíîâ, äâèæóùèõñÿ â ðåæèìå àêñèàëüíîãî êàíàëèðîâàíèÿ â ñè-
ñòåìå ïàðàëëåëüíûõ àòîìíûõ öåïî÷åê (íà ïðèìåðå öåïî÷åê [110] êðèñòàëëà êðåìíèÿ). Ïîêàçàíî, ÷òî
ðàñïðåäåëåíèå ìåæóðîâíåâûõ ðàññòîÿíèé â êâàçèêëàññè÷åñêîé îáëàñòè, ãäå ïëîòíîñòü óðîâíåé âåëèêà,
ñîãëàñóåòñÿ ñ ïðåäñêàçàíèÿìè òåîðèè êâàíòîâîãî õàîñà.

ÑÒÀÒÈÑÒÈ×ÍI ÂËÀÑÒÈÂÎÑÒI ÐIÂÍIÂ ÅÍÅÐÃI�I Â ÊÂÀÍÒÎÂIÉ ÒÅÎÐI�I

ÀÊÑÈÀËÜÍÎÃÎ ÊÀÍÀËÞÂÀÍÍß

Ì.Ô.Øóëüãà, Â.Â.Ñèùåíêî, Î.Þ. Iñóïîâ

Ïðè êàíàëþâàííi øâèäêèõ çàðÿäæåíèõ ÷àñòèíîê ó êðèñòàëi ìîæå áóòè íàÿâíèì êâàíòóâàííÿ åíåðãi¨
ïîïåðå÷íîãî ðóõó â íåïåðåðâíèõ ïîòåíöiàëàõ àòîìíèõ ëàíöþæêiâ. Ó çàïðîïîíîâàíié ðîáîòi çíàéäåíi
ðiâíi åíåðãi¨ åëåêòðîíiâ, ÿêi ðóõàþòüñÿ ó ðåæèìi àêñèàëüíîãî êàíàëþâàííÿ ó ñèñòåìi ïàðàëåëüíèõ àòîì-
íèõ ëàíöþæêiâ (íà ïðèêëàäi ëàíöþæêiâ [110] êðèñòàëà êðåìíiÿ). Ïîêàçàíî, ùî ðîçïîäië ìiæðiâíåâèõ
âiäñòàíiâ ó êâàçèêëàñè÷íié îáëàñòi, äå ùiëüíiñòü ðiâíiâ ¹ âåëèêîþ, óçãîäæó¹òüñÿ ç ïåðåäáà÷åííÿìè
òåîði¨ êâàíòîâîãî õàîñó.
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