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To eliminate the indentation size effect (ISE), we propose to compare the nanohardness of different materials or
a material in different structural states at equal sizes of hardness indents, characterized by a certain fixed
displacement of the indenter hy, rather than under a fixed load P = const, or recalculate the nanohardness for this

m-2
fixed size. For the determination of the nanohardnesss H; at hy, the formula H, = H[hth is proposed, where m

is the constant in the Meyer relation P ~h™. This approach enables us to compare more correctly the values of the
hardness of different materials obtained under different loads.In the present work, 21 materials have been
investigated, parameters that characterize the ISE have been determined and calculated, and the nanohardness has

been calculated at a fixed displacement of the indenter h;.

INTRODUCTION

Modern standard methods of mechanical (tensile,
compression, and bending) tests do not always enable
one to characterize the mechanical properties of new
high-strength materials because of the small size of
specimens and their insufficient plasticity at room
temperature.

For the determination and characterization of the
mechanical properties of brittle and low-plasticity
materials, indentation methods are being extensively
used. Indentation is the most commonly used method of
studying the mechanical properties of coatings.
However, it should be noted that the comparison of data
obtained by these methods is not always correct in view
of using different loads on the indenter and the
existence of the size dependence of the hardness on the
indent size (indentation size effect (ISE).

In recent years, instrumented indentation (with
recording a load-indenter displacement curve) has been
extensively used, which has made it possible to study
the mechanical properties of materials in nanovolumes.
This method revealed that the hardness increases with
decreasing load on an indenter, which shows up most
pronouncedly — under small loads. The ISE
simultaneously manifests itself as an increase in the
nanohardness and a decrease in the plasticity
characteristic ~ (determined in indentation) with
decreasing size of the nanohardness indent [1-15].

In contrast to standard mechanical tests (e.g., in
tension, when the fracture of specimens of some
materials occurs), in indentation, macroscopic fracture
of a specimen does not occur, and, as a consequence,
fracture does not influence the size effect in indentation.
For these reasons, the physical nature of the size effect
of hardness shows up better in nanoindentation under

“more pure” conditions than those in the case of
mechanical tests. In standard mechanical tests, it is
possible to avoid the influence of the size factor on the
mechanical properties by testing specimens of the same
size for comparison of different materials or a material
in different structural states. From this viewpoint, the
determination of the hardness H should be performed at
equal diagonals or equal depths of hardness indents h
[16]. However, actually, in hardness measurements, a
load on the indenter P is set, whereas the size of the
indent and hardness are not only determined by the
properties of the material, but also depend on the size
factor.

This is why it is reasonable to standardize
measurements of nanohardness in the sense that it must
be determined at a certain fixed size of an indent or
recalculated for this fixed size.

The authors consider the possibility of obviating the
influence of the size factor on the value of the
nanohardness by recalculation it for the standard (fixed
in depth or in diagonal) indent size.

MATERIALS AND EXPERIMENTAL
TECHNIQUE

In the present work, a large range of materials with
different atomic structure and character of interatomic
bonds has been investigated (Table). These are
predominantly perfect single crystals or polycrystalline
high-purity materials. Instrumented indentation was
performed with the use of a Nano Indenter Il (MTS
Systems, USA) with a diamond indenter in the form of a
Berkovich trihedral pyramid. The nanohardness and
Young’s modulus were calculated by the Oliver and
Pharr methods [17]. In the most cases, the values of
Young’s modulus coincided with the tabular values.
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Values of the indenter displacement h and nanohardness H at a maximum load on the indenter P, constants m
(see (7)), n (see (8a)), i (see (10a)), and the value of the nanohardness H; recalculated for a fixed displacement
of the indenter h; according to equation (12). Plasticity characteristic dy is given for the real value of H and for H;
(at hy = 100 nm for ceramics and h; = 1000 nm for metals)

T R T ' Hy, GPa, Hy, GPa, On, On, he,
Materiel n?aNx GPa r;n;? GPa | " " | hlea(gOnm hlegf)Onm bl}il bH{ nrfn
BeO™ 10 | 400 |181.5| 12.8 | 1.58 | -0.27 | -0.42 16.5 6.2 0.77 | 0.70
TiN® 50 | 440 (394.3| 246 | 1.72 | -0.16 | -0.28 36.2 18.9 0.60 | 041
Si;N,** | 50 | 324 (415.3| 24.3 | 1.67 | -0.20 | -0.33 39.0 18.2 054 | 0.26
NbC* 50 |550 (404.8| 25.2 | 1.82 | -0.10 | -0.18 325 214 0.64 | 054
NbC* 50 | 550 (359.3| 31.3 | 1.65|-0.21 | -0.35 48.9 21.9 055 | 031 _
ZrIN* 50 | 400 (400.7| 24.3 | 1.65|-0.21 | -0.35 39.7 17.6 057 | 031 |7
TiB,** | 50 | 540 |308.2| 44.1 | 1.63 | -0.22 | -0.37 66.7 28.6 0.42 | 0.16 'é‘
wc* 50 | 700 (310.6| 39.8 | 1.59 | -0.26 | -0.41 63.6 245 0.62 | 0.35 3
LaBg™* 50 | 439 (336.6| 38.7 | 1.53 | -0.30 | -0.46 68.0 23.3 0.34 | 0.04
B-sic* | 50 |460|323.2| 44.3 | 1.70 | -0.17 | -0.30 62.8 31.6 0.29 | 0.09
Zrc*™* 50 |480 (386.0| 26.4 | 1.63 | -0.22 | -0.37 43.3 18.6 057 | 031
B,C° 10 | 500 |123.3| 48.9 | 1.64 | -0.22 | -0.36 52.8 22.8 0.23 | 0.19
ALO,* | 10 | 409 [144.9| 33.3 | 1.64 | -0.22 | -0.36 38.0 16.6 041 | 0.33
MgO* 50 | 310 (584.0| 9.46 | 1.74 | -0.15 | -0.26 15.1 8.2 0.76 | 0.79
w* 10 |420|301.3| 6.10 | 1.85| -0.08 | -0.15 7.2 51 091 | 0.93
Mo™* 50 |324(931.2|3.21 |1.71|-0.17 | -0.29 6.1 3.1 094 | 0.95 ﬁ
cr* 50 | 279 [1025.3| 2.63 | 1.66 | -0.20 | -0.34 5.7 2.6 095 | 095 | o
Nb** 50 |104 [1460.2 1.26 | 1.84 | -0.08 | -0.16 1.9 13 096 | 096 | 8
Ta** 50 | 185 [1259.20 1.74 | 1.75| -0.14 | -0.24 3.2 1.8 096 | 0.96 | 3
Cu*(111) | 62.5 | 170 2100.8| 0.66 | 1.72 | -0.16 | -0.28 1.6 0.8 098 | 0.97
Al** 120 | 70 3148.0 0.66 | 1.73 | -0.16 | -0.27 1.7 0.9 096 | 0.95
* —single crystal, ** — polycrystalline, °—individual grain
PHENOMENOLOGICAL DESCRIPTION OF  formation of dislocation loops of geometrically

THE SIZE DEPENDENCE OF HARDNESS

In [10, 11, 18, 19], the plastic deformation of a
material in indentation is described by the Brown
rotational model, and, in this case, plastic flow is
considered as a displacement along semicircular slip
surfaces with a center at the tip of the indenter. In the
case of this mechanism of deformation, geometrically
necessary dislocations (GNDs), which lead to strain
hardening, are initiated. In this model, the ISE is
explained by an increase in the density of dislocations
as a result of a decrease in the indent size and by the
motion of dislocations around a smaller slip circle. An
expression obtained in this model for a Vickers indenter
has the form:

bd ) @

where H is the Meyer hardness; A* is the ratio of the
hardness (normal stress under the indenter) to the yield
strength; for metals, A* = 3 and o* = 1/3; G is the shear
modulus; b is the Burgers vector of a dislocation, pg is
the initial dislocation density, d is a diagonal of the
indent, and y is the angle between a face and the axis of
the pyramidal indenter.

In the frequently used best-known Nix—Gao model
[4], it is assumed that indentation is accompanied by the

j%

H=A"a"Gb [po L ooy

necessary dislocations with a Burgers vector b, normal
to the surface of the specimen. With regard for both the
geometrically necessary and statistically distributed
dislocations, the following expression was obtained:

H_ /1+”G= /1+h°, )
Ho | ps \ h
where Hy is the hardness in the absence of geometrically
necessary dislocations, pg is the density of
geometrically necessary dislocations, ps is the density of
statistically distributed dislocations, and hy is the size
parameter of the dependence of ps in terms of H,.
Taking into account that d ~h, we can rewrite
equations (1) and (2) in the form:

H2=C(1+Cl),
h

where C and C; are constants.
The dependence of this type was substantiated in [4,

5], but, in many cases, the dependence H?2 N% has a

)

bilinear character, and the values of the constants C and
C, can differ substantially from their theoretical values.

It is likely that the presented models are fairly
successful, but only in a first approximation to the
dislocation mechanism of deformation in indentation,
the more so because mechanisms of deformation can



differ significantly for different
noncrystalline materials.

For this reason, it is difficult to use the above
equations to recalculate the values of the hardness and
nanochardness for one load on the indenter to their
values for another load.

In the present work, we consider a more general
phenomenological approach to the ISE, which does not
require knowledge of the dislocation mechanism of
deformation in indentation. In this approach, the
empirical power dependence P ~h™ (where m = const),
repeatedly substantiated in experiments [16, 20-23], is
used, and the nature of the size dependence of the
hardness is discussed in connection with the relation
between the elastic & and plastic & strain of the
material under an indenter is discussed.

It is known that at indentation of materials by
conical and pyramidal indenters, the total strain is
described by the following equation:

& =& +&p ~oonst . (4)
In what follows, we discuss the mean values of the
strain on the indenter — specimen contact area in the
direction of action of the load. In indentation, the Hooke
law holds in the form [24]:

crystalline and

gez(l—v—sz)%, (5)
where H is the Meyer hardness,
P _aP

H=—=", 6
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P is the load on the indenter, S is the area of the
projection of the hardness indent, E — is Young’s
modulus, v is Poisson’s ratio, h is the penetration depth
of the indenter, and « is the coefficient of the indenter
form.

With decrease in the size of the hardness indent (or
with decrease in the load P), the plastic deformation &,
is hindered and decreases. The suppression of plastic
deformation is caused by an increase in the dislocation
density, difficulties in operation of dislocation sources,
and a decrease in the mean path length of dislocations.
At the same time, the elastic strain &, is determined by
the Hooke law (5) independently of the indent size. In
the case of pyramidal indenters, & ~const and is

determined by the angle y at the tip of the indenter
between the axis of the pyramid and its face. This is
why the suppression of plastic deformation and the
decrease in the value of &, in accord with (4) leads to an
increase in & and, hence, according to (5), to an
increase in the hardness [14, 25].

Let us represent the relation P ~ h™ in the form:

h m
O

where K is a constant, hy is a displacement equal to 1 in
the used system of units. For nanohardness, it is
reasonable to take hy = 1 nm. The value of the exponent
m is usually below 2 [16]. In [20-22], it was shown that
the parameter m decreases linearly with increasing ratio
H/E, where E is Young’s modulus. Since with decrease
in the load on the indenter, the nanohardness increases

substantially, this can be one of the reasons of an
insignificant reduction in m with decreasing load P.
Using expressions (6) and (7), we obtain;

H=K,-P", (8)
-1-2
where n=1 % (8a)
(n <0, i.e., H decreases with increasing load P), and

K =———=const .

It is important to note that relation (8) usually holds
fairly well for single crystals. For polycrystals, this
expression can be used if the size of the hardness indent
is smaller than the grain size [23]. At a smaller grain
size, the length of the slip plane is determined by the
grain size D, and the size dependence of the hardness
must also take into account D [26]. In nanohardness
measurements, the relation h<<D holds for most
materials, which enables us to use relation (8) to
describe the size dependence of the nanohardness.

Along with dependences (1), (2), and (3), in the
literature, the ISE is commonly characterized by the
power dependence H=f(h) [5, 23, 27]:

H = Ah', 9)
where A and i are constants.

In view of (6) and (7), we get:

AS K

m

(10)

and
i=m-2 . (10a)
According to [27], the experimental values of i for
different materials range from —0.12 to —-0.32.
As an example, the authors investigated the change
in the nanohardness H depending on the load P for
single crystal Cu (111) (Fig. 1) earlier.

Cu (111)
51.4- °
<
1.2}
10}
08| N
. . H
0.6 o)

6 2|0 4-'0 6|0 8|0 160 150 P. mN
9
Fig. 1. Influence of the load on the indenter P on the
nanohardness H of single crystal Cu (111) [25]

It is seen in Fig. 1 that a decrease in the load P leads
to a substantial increase in H. This phenomenon shows
up  particularly  noticeably  under P <6 mN
(h <500 nm).

The sharp dependence of the nanohardness on the
load P and depth of penetration of the indenter h raises
the problem of the necessity of having a technique for
recalculating the value of the nanohardness for one load
to its value for another load for practical application.
The standardization of measuring the nanchardness in



the sense that it must be determined at a certain fixed
size of an indent or recalculated for this fixed size is
also reasonable.

For the recalculation of the value of the
nanohardness for one load P, to its value for another
load P,, we can use the following relation obtained for
the microhardness in [16]:

n
[=)
= 2
1

(This relation is easily obtained from expression (8)
presented in the present work.)
The constant m can be determined by the formula

(11)

m= dlogP if the hardness was determined under
dlogh
different loads P. The constant m can also be

approximately determined from a curve of loading in
the P-h coordinates if this curve is represented in the

form P=K"-h™ and is recorded at a sufficiently
large maximum load P.

To determine the nanohardness H; at a fixed size of
an indent of h;, we can use relation (9), from which we

get:
Hf :H —_— .
h

Therefore, by the value of H;, we can calculate the size
dependence of the hardness by the following equation:

1
f

Here, H is the hardness at a certain displacement of the
indenter h. It is naturally desirable that h differs not
significantly from h; because the value of m depends,
while insignificantly, on h. In nanohardness
measurement, the choice of h; that can be used for all
materials is complicated by the large difference in
hardness between materials of different types.

This approach to the determination of the
nanohardness at a fixed size of an indent, rather than
under a fixed load P, makes it possible to eliminate the
influence of the size factor on the nanohardness, i.e., it
enables us to compare more correctly the hardness of
materials.

EXPERIMENTAL VALUES OF CONSTANTS
THAT CHARACTERIZE THE ISE

In the present work, using the obtained results, we
calculated the constants m, n, and i, which characterize
the ISE, and the nanohardness at a fixed displacement of
the indenter h¢. Plasticity characteristic Jy [14, 15, 24]
was calculated as well. The obtained results are
presented in Table.

On the basis of the obtained experimental data, a
plot of the dependence of the constant m on the ratio of
the hardness H to Young’s modulus E was constructed

(Fig. 2).
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Fig. 2. Dependence of the constant m on the ratio of the
hardness to Young’s modulus H/E

As has been noted, in microhardness tests, m
decreases linearly as the ratio H/E increases. In contrast
to microhardness tests, in nanoindentation, a large
deviation of the values of m from a linear dependence is
observed, which can be due to the essential value of the
ISE in nanoindentation.

In [28], data on the dependence of m on H/E for
macrohardness were generalized. It was shown that a
decrease in m is observed, but the value of m is
somewhat higher than those for microhardness and
nanohardness and practically attains 2.

In the present work, the decrease in the parameter m
with increasing ratio H/E is also substantiated and is
beyond doubt. In this case, the constant n and the
absolute value of the constant i increase, and, hence, a
stronger significant influence of the size factor on low-
ductile and hard materials is observed.

The results of calculation of H; show that the ISE is
fairly substantial in nanohardness measurements. It is
seen that, as was expected earlier, a wide spectrum of
investigated materials cannot be correctly recalculated
at single h. The recalculated values of the hardness of
brittle and low-plasticity materials correlate most
acceptably with the corresponding measured values at
h¢ = 100 nm. At the same time, for plastic materials with
a low hardness the value hy = 1000 nm is preferred.

Note that the recalculated values enable us to
compare the hardness of a wide range of materials in the
absence of the influence of the size factor.

h, nm
0 500 1000 1500 2000 2500 3000 3500
< 16 . . . : : .
T
. A values used in calculating
= H(h)
1.2
1.0
08}
0.6 H(P)
0 20 40 60 80 100 120 140
P, mN

Fig. 3. Curves of the dependence of the nanohardness H
on the load on the indenter P and the displacement of
the indenter h for single crystal copper (111) and
experimental dots obtained in [29]



To check the developed notions, the authors present
dependences H(P) (calculated by equation (11) at
H,; =0.85 GPa, P, = 12.5 mN, and n = —-0.16) and H(h)
(calculated by equation (12a) at H;=0.85 GPa,
h{ =827 nm, and i = —0.28) for single crystal copper.
The obtained results are shown in Fig 3.

It is seen that the curves constructed on the basis of
the calculated values of the hardness coincide
satisfactorily with experimental results obtained in [29].

One can see from the table 1, that the ISE is not very
essential for the plasticity characteristic oy of metals,
but for ceramics the influence of the ISE on the dy is
very strong. This problem requires further study and
discussion.

CONCLUSIONS

1. Fracture does not influence on the size effect in
indentation in contrast to standard mechanical tests
(e.g., in tension, when, in some materials, the fracture of
a tested specimens occurs). For these reasons, the
physical nature of the size effect shows up in
nanoindentation under “more pure” condition, than
those in uniaxial mechanical tests. The size effect in
nanoindentation (an increase in the hardness with
decreasing load on the indenter) can be explained by the
fact that plastic deformation is inhibited with decrease
in the size of the indent, but the elastic strain is
independent on the indent size at condition that the total
strain is nearly constant & ~const and is determined

by the shape of the indenter.

2. The phenomenological approach to the ISE, in
which the power dependence of the load on the indenter
P on the displacement of the indenter h in the form of

the Meyer relation P=const-h™, (where m is a
constant) is used, enables us to describe the ISE for
single crystals by the equations H=K,;-P" and

H = Ah', where n=1—2m andi=m—2. Asarule, for

polycrystals, these relations hold if the size of the indent
is several times smaller than the grain size, which
usually takes place in determination of nanohardness.

3. The nanohardness H; obtained under a load P; can
be recalculated to the nanohardness H, under a load P,

n
by the relation H, = Hl(sz :
|

4. To eliminate the size effect, it is reasonable to
perform a comparison of the nanohardness of different
materials or a material in different structural states not
under P = const, but at equal sizes of hardness indents,
characterized by some fixed displacement of the
indenter h;.

The recalculation of the nanohardness H obtained at
some value of h to the nanohardness Hs at a fixed size of
the indent h; can be performed by the expression

h I
H; = H[hf] . As hy, it is proposed to use the value

1000 nm for metals and 100 nm for ceramics and other
high-strength materials.

5. The performed investigations have shown that the
formulas proposed by the authors describe fairly well

the experimental data and can be used to eliminate the
influence of the size factor on the hardness of materials.
We believe that, in subsequent works, it is reasonable to
perform correction of this type of measured results by
recalculation at h; for the correct comparison of the
values of the hardness obtained in different works under
different loads.

6. It was shown that influence of the ISE on the
plasticity characteristic dy of ceramics is very strong.
This problem requires further study.
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OIIPEAEJIEHUE HAHOTBEPJAOCTHU ITPU ®PUKCUPOBAHHOM PABMEPE OTIIEYATKA
TBEPJOCTHU 1JIA YCTPAHEHUA MACIUTABHOI'O ®AKTOPA

10.B. Munvman, A.A. I'onybenxo, C.H. /[yo

CpaBHeHHE HAHOTBEPIOCTH PAa3JIMYHBIX MATEPUaOB WM OJHOTO MaTepuaja B Pa3IMYHbIX CTPYKTYPHBIX
COCTOSIHHMSX JUTsl yCTpaHeHus MacmrabHoi 3aBucumoctu tBepaoctd ISE (Indentation Size Effect) mpemmaraercs
NPOBOJAUTH HE MpPU HArpyske P = CONSt, a npu oJMHAKOBOM pa3Mepe OTIEYATKa TBEPIAOCTH, XapaKTepPU3yeMOM
HEKOTOPHIM ~ (QMKCHPOBAHHBIM 3HAYEGHHEM MEPEMEIICHUs MHAGHTOpa Ny, WIM TepecunThiBaTh Ha 3TOT

m-2
¢uxcupoBanHbIi pa3mep. [lna onpenenenus HanoTBepHnocTH Hy mpu hy mpemnoxena dpopmyma: ,= H[hij ,
K h

rjie M — KOHCTaHTa B cooTHomenun Meitepa P ~h™ . Takoii moaxos mo3BosiseT 6ojiee KOPPEKTHO COMOCTABIIATH
BEITMYMHBI TBEPJOCTH MaTepHaloB, MOJYYEHHBIE NPH pPa3HBIX Harpyskax. B pabore umccinemoman 21 marepuadi,
ONpeJesieHbl M pacCYMTaHbl Iapamerphl, Xapakrepusylomue ISE, a Takxke paccuuTaHa HAHOTBEPJOCTb MNPHU
(MKCHPOBAaHHOM 3HAYEHUH TIEPEMEIEHNs] HHICHTOPA hq).

BU3HAUYEHHS HAHOTBEPJOCTI IIPU ®IKCOBAHOMY PO3MIPI BIIBUTKA
TBEPJOCTI JJIAA YCYHEHHSA MACHITABHOI'O ®AKTOPY
10.B. Minvman, O.A. I'onyoenxo, C.M. /[yo
[TopiBHSHHS HAHOTBEPJOCTI PI3HWX MaTrepiayliB ado OJHOTO MaTepialy B Pi3HUX CTPYKTYPHHUX CTaHax Jjist
ycynenHs ISE (Indentation Size Effect) mpomonyeThcs mpoBOAMTH He NpH HaBaHTaxeHHI P = const, a mpu
OJIHAaKOBOMY PO3MIipi BiIOMTKA TBEPAOCTi, AKUH XapaKTEPU3YEThCA ACSIKUM (DIKCOBAaHMM 3HAYEHHSIM IEPEMIIIeHHS
innenropa hy, abo mepepaxoByBaTH Ha Iel QikcoBanmii po3mip. Jlns BHM3HaueHHs HaHoTBepnocti Hg mpu hy

m-2
3anporoHoBaHo dopmyny: H, = H{ﬁ’} , Ie M — KOHCTAaHTA B cHiBBigHOmeHHi Meitepa P ~h™. Taxuit
MiAXiA T03BOJIsE OUTBII KOPEKTHO NOPIBHIOBATH BEIMYMHH TBEPAOCTI MaTepiaiiB, OTpPHMaHI IpU PI3HUX

HaBaHTaXEHHsX. Y poOOTi mocmimkeHo 21 Marepian, BU3HAYEHI 1 po3paxoBaHi MapaMmeTpH, M0 XapaKTepHU3yIOTh
ISE, a Tako po3paxoBaHa HAHOTBEPAOCTH NPH PiKCOBAHOMY 3Ha4YCHHI IepeMillleHHs iHnenTopa Ny,



