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To eliminate the indentation size effect (ISE), we propose to compare the nanohardness of different materials or 

a material in different structural states at equal sizes of hardness indents, characterized by a certain fixed 

displacement of the indenter hf, rather than under a fixed load P = const, or recalculate the nanohardness for this 

fixed size. For the determination of the nanohardnesss Hf at hf, the formula 
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is the constant in the Meyer relation mhP ~ . This approach enables us to compare more correctly the values of the 

hardness of different materials obtained under different loads.In the present work, 21 materials have been 

investigated, parameters that characterize the ISE have been determined and calculated, and the nanohardness has 

been calculated at a fixed displacement of the indenter hf. 

 

INTRODUCTION 

Modern standard methods of mechanical (tensile, 

compression, and bending) tests do not always enable 

one to characterize the mechanical properties of new 

high-strength materials because of the small size of 

specimens and their insufficient plasticity at room 

temperature. 

For the determination and characterization of the 

mechanical properties of brittle and low-plasticity 

materials, indentation methods are being extensively 

used. Indentation is the most commonly used method of 

studying the mechanical properties of coatings. 

However, it should be noted that the comparison of data 

obtained by these methods is not always correct in view 

of using different loads on the indenter and the 

existence of the size dependence of the hardness on the 

indent size (indentation size effect (ISE). 

In recent years, instrumented indentation (with 

recording a load-indenter displacement curve) has been 

extensively used, which has made it possible to study 

the mechanical properties of materials in nanovolumes. 

This method revealed that the hardness increases with 

decreasing load on an indenter, which shows up most 

pronouncedly under small loads. The ISE 

simultaneously manifests itself as an increase in the 

nanohardness and a decrease in the plasticity 

characteristic (determined in indentation) with 

decreasing size of the nanohardness indent [1–15]. 

In contrast to standard mechanical tests (e.g., in 

tension, when the fracture of specimens of some 

materials occurs), in indentation, macroscopic fracture 

of a specimen does not occur, and, as a consequence, 

fracture does not influence the size effect in indentation. 

For these reasons, the physical nature of the size effect 

of hardness shows up better in nanoindentation under 

“more pure” conditions than those in the case of 

mechanical tests. In standard mechanical tests, it is 

possible to avoid the influence of the size factor on the 

mechanical properties by testing specimens of the same 

size for comparison of different materials or a material 

in different structural states. From this viewpoint, the 

determination of the hardness H should be performed at 

equal diagonals or equal depths of hardness indents h 

[16]. However, actually, in hardness measurements, a 

load on the indenter P is set, whereas the size of the 

indent and hardness are not only determined by the 

properties of the material, but also depend on the size 

factor. 

This is why it is reasonable to standardize 

measurements of nanohardness in the sense that it must 

be determined at a certain fixed size of an indent or 

recalculated for this fixed size. 

The authors consider the possibility of obviating the 

influence of the size factor on the value of the 

nanohardness by recalculation it for the standard (fixed 

in depth or in diagonal) indent size. 

MATERIALS AND EXPERIMENTAL 

TECHNIQUE  

In the present work, a large range of materials with 

different atomic structure and character of interatomic 

bonds has been investigated (Table). These are 

predominantly perfect single crystals or polycrystalline 

high-purity materials. Instrumented indentation was 

performed with the use of a Nano Indenter II (MTS 

Systems, USA) with a diamond indenter in the form of a 

Berkovich trihedral pyramid. The nanohardness and 

Young’s modulus were calculated by the Oliver and 

Pharr methods [17]. In the most cases, the values of 

Young’s modulus coincided with the tabular values. 
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Values of the indenter displacement h and nanohardness H at a maximum load on the indenter P, constants m  

(see (7)), n (see (8a)), i (see (10а)), and the value of the nanohardness Hf recalculated for a fixed displacement  

of the indenter hf according to equation (12). Plasticity characteristic δH is given for the real value of H and for Hf  

(at hf = 100 nm for ceramics and hf = 1000 nm for metals) 
 

Material 
Pmax, 

mN 

E, 

GPa 

hmax, 

nm 

H, 

GPa 
m n i 

Hf, GPa, 

at 

hf = 100 nm 

Hf, GPa, 

at 

hf = 1000 nm 

δH, 

by 

H 

δH, 

by 

Hf 

hf, 

nm 

BeO* 10 400 181.5 12.8 1.58 -0.27 -0.42 16.5 6.2 0.77 0.70 

h
f  =

 1
0
0

 n
m

 

TiN 50 440 394.3 24.6 1.72 -0.16 -0.28 36.2 18.9 0.60 0.41 

Si3N4** 50 324 415.3 24.3 1.67 -0.20 -0.33 39.0 18.2 0.54 0.26 

NbC* 50 550 404.8 25.2 1.82 -0.10 -0.18 32.5 21.4 0.64 0.54 

NbC* 50 550 359.3 31.3 1.65 -0.21 -0.35 48.9 21.9 0.55 0.31 

ZrN* 50 400 400.7 24.3 1.65 -0.21 -0.35 39.7 17.6 0.57 0.31 

TiB2** 50 540 308.2 44.1 1.63 -0.22 -0.37 66.7 28.6 0.42 0.16 

WC* 50 700 310.6 39.8 1.59 -0.26 -0.41 63.6 24.5 0.62 0.35 

LaB6* 50 439 336.6 38.7 1.53 -0.30 -0.46 68.0 23.3 0.34 0.04 

β -SiC* 50 460 323.2 44.3 1.70 -0.17 -0.30 62.8 31.6 0.29 0.09 

ZrC** 50 480 386.0 26.4 1.63 -0.22 -0.37 43.3 18.6 0.57 0.31 

B4C 10 500 123.3 48.9 1.64 -0.22 -0.36 52.8 22.8 0.23 0.19 

Al2O3* 10 409 144.9 33.3 1.64 -0.22 -0.36 38.0 16.6 0.41 0.33 

MgO* 50 310 584.0 9.46 1.74 -0.15 -0.26 15.1 8.2 0.76 0.79 

h
f  =

 1
0
0

0
 n

m
 

W* 10 420 301.3 6.10 1.85 -0.08 -0.15 7.2 5.1 0.91 0.93 

Mo* 50 324 931.2 3.21 1.71 -0.17 -0.29 6.1 3.1 0.94 0.95 

Cr* 50 279 1025.3 2.63 1.66 -0.20 -0.34 5.7 2.6 0.95 0.95 

Nb** 50 104 1460.2 1.26 1.84 -0.08 -0.16 1.9 1.3 0.96 0.96 

Ta** 50 185 1259.2 1.74 1.75 -0.14 -0.24 3.2 1.8 0.96 0.96 

Cu*(111) 62.5 170 2100.8 0.66 1.72 -0.16 -0.28 1.6 0.8 0.98 0.97 

Al** 120 70 3148.0 0.66 1.73 -0.16 -0.27 1.7 0.9 0.96 0.95 

* – single crystal,   ** – polycrystalline,    – individual grain 
 

PHENOMENOLOGICAL DESCRIPTION OF 

THE SIZE DEPENDENCE OF HARDNESS 

In [10, 11, 18, 19], the plastic deformation of a 

material in indentation is described by the Brown 

rotational model, and, in this case, plastic flow is 

considered as a displacement along semicircular slip 

surfaces with a center at the tip of the indenter. In the 

case of this mechanism of deformation, geometrically 

necessary dislocations (GNDs), which lead to strain 

hardening, are initiated. In this model, the ISE is 

explained by an increase in the density of dislocations 

as a result of a decrease in the indent size and by the 

motion of dislocations around a smaller slip circle. An 

expression obtained in this model for a Vickers indenter 

has the form: 
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where H is the Meyer hardness; A* is the ratio of the 

hardness (normal stress under the indenter) to the yield 

strength; for metals, A*  3 and *  1/3; G is the shear 

modulus; b is the Burgers vector of a dislocation, ρ0 is 

the initial dislocation density, d is a diagonal of the 

indent, and  is the angle between a face and the axis of 

the pyramidal indenter. 

In the frequently used best-known Nix–Gao model 

[4], it is assumed that indentation is accompanied by the 

formation of dislocation loops of geometrically 

necessary dislocations with a Burgers vector b, normal 

to the surface of the specimen. With regard for both the 

geometrically necessary and statistically distributed 

dislocations, the following expression was obtained: 
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where H0 is the hardness in the absence of geometrically 

necessary dislocations, G is the density of 

geometrically necessary dislocations, S is the density of 

statistically distributed dislocations, and h0 is the size 

parameter of the dependence of S in terms of H0. 

Taking into account that d  h, we can rewrite 

equations (1) and (2) in the form: 
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where C and C1 are constants. 

The dependence of this type was substantiated in [4, 

5], but, in many cases, the dependence 
h

H
12   has a 

bilinear character, and the values of the constants C and 

C1 can differ substantially from their theoretical values. 

It is likely that the presented models are fairly 

successful, but only in a first approximation to the 

dislocation mechanism of deformation in indentation, 

the more so because mechanisms of deformation can 



 

differ significantly for different crystalline and 

noncrystalline materials. 

For this reason, it is difficult to use the above 

equations to recalculate the values of the hardness and 

nanohardness for one load on the indenter to their 

values for another load. 

In the present work, we consider a more general 

phenomenological approach to the ISE, which does not 

require knowledge of the dislocation mechanism of 

deformation in indentation. In this approach, the 

empirical power dependence mhP ~  (where m ≈ const), 

repeatedly substantiated in experiments [16, 20–23], is 

used, and the nature of the size dependence of the 

hardness is discussed in connection with the relation 

between the elastic e and plastic p strain of the 

material under an indenter is discussed. 

It is known that at indentation of materials by 

conical and pyramidal indenters, the total strain is 

described by the following equation: 

constpet   .  (4) 

In what follows, we discuss the mean values of the 

strain on the indenter – specimen contact area in the 

direction of action of the load. In indentation, the Hooke 

law holds in the form [24]: 
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P is the load on the indenter, S is the area of the 

projection of the hardness indent, E – is Young’s 

modulus,  is Poisson’s ratio, h is the penetration depth 

of the indenter, and  is the coefficient of the indenter 

form. 

With decrease in the size of the hardness indent (or 

with decrease in the load P), the plastic deformation p 

is hindered and decreases. The suppression of plastic 

deformation is caused by an increase in the dislocation 

density, difficulties in operation of dislocation sources, 

and a decrease in the mean path length of dislocations. 

At the same time, the elastic strain e is determined by 

the Hooke law (5) independently of the indent size. In 

the case of pyramidal indenters, constt   and is 

determined by the angle  at the tip of the indenter 

between the axis of the pyramid and its face. This is 

why the suppression of plastic deformation and the 

decrease in the value of p in accord with (4) leads to an 

increase in e and, hence, according to (5), to an 

increase in the hardness [14, 25]. 

Let us represent the relation mhP ~ in the form: 
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where K is a constant, h0 is a displacement equal to 1 in 

the used system of units. For nanohardness, it is 

reasonable to take h0 = 1 nm. The value of the exponent 

m is usually below 2 [16]. In [20–22], it was shown that 

the parameter m decreases linearly with increasing ratio 

H/E, where E is Young’s modulus. Since with decrease 

in the load on the indenter, the nanohardness increases 

substantially, this can be one of the reasons of an 

insignificant reduction in m with decreasing load P. 

Using expressions (6) and (7), we obtain: 
nPKH  1 ,   (8) 

where 
m

n 21                  (8а) 

(n < 0, i.e., H decreases with increasing load P), and 
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It is important to note that relation (8) usually holds 

fairly well for single crystals. For polycrystals, this 

expression can be used if the size of the hardness indent 

is smaller than the grain size [23]. At a smaller grain 

size, the length of the slip plane is determined by the 

grain size D, and the size dependence of the hardness 

must also take into account D [26]. In nanohardness 

measurements, the relation h << D holds for most 

materials, which enables us to use relation (8) to 

describe the size dependence of the nanohardness. 

Along with dependences (1), (2), and (3), in the 

literature, the ISE is commonly characterized by the 

power dependence H=f(h) [5, 23, 27]: 
iAhH  ,   (9) 

where A and i are constants. 

In view of (6) and (7), we get: 
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and 

i = m – 2  .                         (10а) 

 

According to [27], the experimental values of i for 

different materials range from –0.12 to –0.32. 

As an example, the authors investigated the change 

in the nanohardness H depending on the load P for 

single crystal Cu (111) (Fig. 1) earlier. 

 
 

Fig. 1. Influence of the load on the indenter P on the 

nanohardness H of single crystal Cu (111) [25] 

 

It is seen in Fig. 1 that a decrease in the load P leads 

to a substantial increase in H. This phenomenon shows 

up particularly noticeably under P < 6 mN 

(h < 500 nm). 

The sharp dependence of the nanohardness on the 

load P and depth of penetration of the indenter h raises 

the problem of the necessity of having a technique for 

recalculating the value of the nanohardness for one load 

to its value for another load for practical application. 

The standardization of measuring the nanohardness in 



 

the sense that it must be determined at a certain fixed 

size of an indent or recalculated for this fixed size is 

also reasonable. 

For the recalculation of the value of the 

nanohardness for one load P1 to its value for another 

load P2, we can use the following relation obtained for 

the microhardness in [16]: 
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(This relation is easily obtained from expression (8) 

presented in the present work.) 

The constant m can be determined by the formula 

hd

Pd
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  if the hardness was determined under 

different loads P. The constant m can also be 

approximately determined from a curve of loading in 

the P–h coordinates if this curve is represented in the 

form ** mhKP   and is recorded at a sufficiently 

large maximum load P. 

To determine the nanohardness Hf at a fixed size of 

an indent of hf, we can use relation (9), from which we 

get: 
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Therefore, by the value of Hf, we can calculate the size 

dependence of the hardness by the following equation: 
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Here, H is the hardness at a certain displacement of the 

indenter h. It is naturally desirable that h differs not 

significantly from hf because the value of m depends, 

while insignificantly, on h. In nanohardness 

measurement, the choice of hf that can be used for all 

materials is complicated by the large difference in 

hardness between materials of different types. 

This approach to the determination of the 

nanohardness at a fixed size of an indent, rather than 

under a fixed load P, makes it possible to eliminate the 

influence of the size factor on the nanohardness, i.e., it 

enables us to compare more correctly the hardness of 

materials. 

EXPERIMENTAL VALUES OF CONSTANTS 

THAT CHARACTERIZE THE ISE  

In the present work, using the obtained results, we 

calculated the constants m, n, and i, which characterize 

the ISE, and the nanohardness at a fixed displacement of 

the indenter hf. Plasticity characteristic δH [14, 15, 24] 

was calculated as well. The obtained results are 

presented in Table. 

On the basis of the obtained experimental data, a 

plot of the dependence of the constant m on the ratio of 

the hardness H to Young’s modulus E was constructed 

(Fig. 2). 

 
Fig. 2. Dependence of the constant m on the ratio of the 

hardness to Young’s modulus H/E 
 

As has been noted, in microhardness tests, m 

decreases linearly as the ratio H/E increases. In contrast 

to microhardness tests, in nanoindentation, a large 

deviation of the values of m from a linear dependence is 

observed, which can be due to the essential value of the 

ISE in nanoindentation. 

In [28], data on the dependence of m on H/E for 

macrohardness were generalized. It was shown that a 

decrease in m is observed, but the value of m is 

somewhat higher than those for microhardness and 

nanohardness and practically attains 2. 

In the present work, the decrease in the parameter m 

with increasing ratio H/E is also substantiated and is 

beyond doubt. In this case, the constant n and the 

absolute value of the constant i increase, and, hence, a 

stronger significant influence of the size factor on low-

ductile and hard materials is observed. 

The results of calculation of Hf show that the ISE is 

fairly substantial in nanohardness measurements. It is 

seen that, as was expected earlier, a wide spectrum of 

investigated materials cannot be correctly recalculated 

at single hf. The recalculated values of the hardness of 

brittle and low-plasticity materials correlate most 

acceptably with the corresponding measured values at 

hf = 100 nm. At the same time, for plastic materials with 

a low hardness the value hf = 1000 nm is preferred. 

Note that the recalculated values enable us to 

compare the hardness of a wide range of materials in the 

absence of the influence of the size factor. 

 

Fig. 3. Curves of the dependence of the nanohardness H 

on the load on the indenter P and the displacement of 

the indenter h for single crystal copper (111) and 

experimental dots obtained in [29] 



 

To check the developed notions, the authors present 

dependences H(P) (calculated by equation (11) at 

H1 = 0.85 GPa, P1 = 12.5 mN, and n = –0.16) and H(h) 

(calculated by equation (12a) at Hf = 0.85 GPa, 

hf = 827 nm, and i = –0.28) for single crystal copper. 

The obtained results are shown in Fig 3. 

It is seen that the curves constructed on the basis of 

the calculated values of the hardness coincide 

satisfactorily with experimental results obtained in [29]. 

One can see from the table 1, that the ISE is not very 

essential for the plasticity characteristic δH of metals, 

but for ceramics the influence of the ISE on the δH is 

very strong. This problem requires further study and 

discussion. 

CONCLUSIONS 

1. Fracture does not influence on the size effect in 

indentation in contrast to standard mechanical tests 

(e.g., in tension, when, in some materials, the fracture of 

a tested specimens occurs). For these reasons, the 

physical nature of the size effect shows up in 

nanoindentation under “more pure” condition, than 

those in uniaxial mechanical tests. The size effect in 

nanoindentation (an increase in the hardness with 

decreasing load on the indenter) can be explained by the 

fact that plastic deformation is inhibited with decrease 

in the size of the indent, but the elastic strain is 

independent on the indent size at condition that the total 

strain is nearly constant constt   and is determined 

by the shape of the indenter. 

2. The phenomenological approach to the ISE, in 

which the power dependence of the load on the indenter 

P on the displacement of the indenter h in the form of 

the Meyer relation 
mhconstP  , (where m is a 

constant) is used, enables us to describe the ISE for 

single crystals by the equations nPKH  1  and 

iAhH  , where 
m

n 21  and i = m – 2. As a rule, for 

polycrystals, these relations hold if the size of the indent 

is several times smaller than the grain size, which 

usually takes place in determination of nanohardness. 

3. The nanohardness H1 obtained under a load P1 can 

be recalculated to the nanohardness H2 under a load P2 

by the relation 
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4. To eliminate the size effect, it is reasonable to 

perform a comparison of the nanohardness of different 

materials or a material in different structural states not 

under P = const, but at equal sizes of hardness indents, 

characterized by some fixed displacement of the 

indenter hf. 

The recalculation of the nanohardness H obtained at 

some value of h to the nanohardness Hf at a fixed size of 

the indent hf can be performed by the expression 
i

f
f

h

h
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
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
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
 . As hf, it is proposed to use the value 

1000 nm for metals and 100 nm for ceramics and other 

high-strength materials. 

5. The performed investigations have shown that the 

formulas proposed by the authors describe fairly well 

the experimental data and can be used to eliminate the 

influence of the size factor on the hardness of materials. 

We believe that, in subsequent works, it is reasonable to 

perform correction of this type of measured results by 

recalculation at hf for the correct comparison of the 

values of the hardness obtained in different works under 

different loads. 

6. It was shown that influence of the ISE on the 

plasticity characteristic δH of ceramics is very strong. 

This problem requires further study. 
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ОПРЕДЕЛЕНИЕ НАНОТВЕРДОСТИ ПРИ ФИКСИРОВАННОМ РАЗМЕРЕ ОТПЕЧАТКА 

ТВЕРДОСТИ ДЛЯ УСТРАНЕНИЯ МАСШТАБНОГО ФАКТОРА 

Ю.В. Мильман, А.А. Голубенко, С.Н. Дуб 

Сравнение нанотвердости различных материалов или одного материала в различных структурных 

состояниях для устранения масштабной зависимости твердости ISE (Indentation Size Effect) предлагается 

проводить не при нагрузке P = const, а при одинаковом размере отпечатка твердости, характеризуемом 

некоторым фиксированным значением перемещения индентора hф, или пересчитывать на этот 

фиксированный размер. Для определения нанотвердости Hф при hф предложена формула: 
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где m  константа в соотношении Мейера mhP ~ . Такой подход позволяет более корректно сопоставлять 

величины твердости материалов, полученные при разных нагрузках. В работе исследован 21 материал, 

определены и рассчитаны параметры, характеризующие ISE, а также рассчитана нанотвердость при 

фиксированном значении перемещения индентора hф. 

ВИЗНАЧЕННЯ НАНОТВЕРДОСТІ ПРИ ФІКСОВАНОМУ РОЗМІРІ ВІДБИТКА 

ТВЕРДОСТІ ДЛЯ УСУНЕННЯ МАСШТАБНОГО ФАКТОРУ 

Ю.В. Мільман, О.А. Голубенко, С.М. Дуб 

Порівняння нанотвердості різних матеріалів або одного матеріалу в різних структурних станах для 

усунення ISE (Indentation Size Effect) пропонується проводити не при навантаженні P = const, а при 

однаковому розмірі відбитка твердості, який характеризується деяким фіксованим значенням переміщення 

індентора hф, або перераховувати на цей фіксований розмір. Для визначення нанотвердості Hф при hф 

запропоновано формулу: 
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ф
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h
HH , де m  константа в співвідношенні Мейера 

mhP ~ . Такий 

підхід дозволяє більш коректно порівнювати величини твердості матеріалів, отримані при різних 

навантаженнях. У роботі досліджено 21 матеріал, визначені і розраховані параметри, що характеризують 

ISE, а також розрахована нанотвердость при фіксованому значенні переміщення індентора hф. 


