PHOTONUCLEAR PRODUCTION OF Pm-149

N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine E-mail: ndikiy@kipt.kharkov.ua

¹⁵³Sm is successfully used for palliative treatment of patients with bone metastases and pain. ¹⁵³Sm is being produced in the reactors by means of irradiating of ¹⁵²Sm. In radio-labelled radiopharmaceuticals per each isotope of ¹⁵³Sm contained about 1000 atoms of the ¹⁵²Sm, which greatly influence the kinetics of its transport into the tumor. Production of ¹⁴⁹Pm isotopes that do not contain impurities of other isotopes, it was implemented using photonuclear reactions. The characteristics ¹⁴⁹Pm is practically coincides with the parameters of ¹⁵³Sm. The irradiation of neodymium of natural isotopic composition was carried out by means of bremsstrahlung with a maximum energy of 12.5 MeV. For production of ¹⁴⁹Pm the reaction ¹⁵⁰Nd(γ,n)¹⁴⁹Nd ($T_{1/2}$ =1.73 hours) \rightarrow ¹⁴⁹Pm was used. Reaction ¹⁴⁸Nd(γ,n)¹⁴⁷Nd ($T_{1/2}$ =10.93 days) \rightarrow ¹⁴⁷Pm ($T_{1/2}$ =2.62 years) will lead to low activity ¹⁴⁷Pm provided daily extraction ¹⁴⁹Pm. The rare earth elements of cerium group successfully are separated in a multistage extraction column using a normal tributyl ester of phosphoric acid.

PACS: 28.60.+s; 87.53.Jw

INTRODUCTION

The metastatic bone lesions develop in various cancers and are accompanied by persistent pain. For the palliative treatment of patients with bone metastases and pain successfully used isotopes. Intensively used for this purpose ¹⁵³Sm, which is produced in the reactors by irradiating isotope ¹⁵²Sm. Despite the large capture cross section of thermal neutrons per each isotope of ¹⁵³Sm contains about 1000 atoms of the ¹⁵²Sm, which greatly influence the kinetics of its transport into the tumor.

Targeted tumor radiotherapy requires radioisotopes with high specific activity, high LET particle emissions, photon emissions for monitoring therapy with imaging and follow-up as well as adsorbed dose distribution and half-lives long enough to allow the preparation and distribution of radiopharmaceuticals. Encouraging clinical results have been achieved with ¹⁷⁷Lu-DOTATATE and [¹⁷⁷Lu-DOTA⁰-Tyr³]-octreotide (¹⁷⁷Lu-DOTATOC) in the treatment of neuroendocrine tumors [1 - 3]. Because all lanthanides have similar chemical properties, they should have similar labeling procedures, and ¹⁷⁷Lu might easily be replaced by other radiolanthanides (Table).

Decay Data for the 153Sm, 149Pm and 177Lu

Iso-	Decay	Energy β-par-	Energy γ-radia-
tope	period,	ticles (intensi-	tion, keV, (in-
	hours	ty), keV (%)	tensity, %)
¹⁵³ Sm	46.44	640 (32), 710	103.2 (29,2)
		(49), 810 (19)	
¹⁴⁹ Pm	53.08	1072 (97)	285.6 (2,9)
¹⁷⁷ Lu	160.8	497 (90)	208.3 (7.4)
¹⁶⁹ Er	223.2	322 (15),	_
		330 (85)	

Depending on the production route, either nocarrier-added (nca) or carrier-added (ca) radionuclides are obtained. High specific activity is necessary for systemic radionuclide therapy [4], especially when using peptides with pharmacological side effects [5].

An important criterion for therapeutic use radiolanthanides is their energy deposition in tumors and in a normal tissue. The absorbed dose to a normal tissue, and especially to the organs concentrating a certain isotope, should be maintained so low as far as possible. These radionuclides with low emission of a gamma radiation should be used. On Fig. 1 the qualities of medical isotopes of lanthanoids are given at use for radiotheraphy of tumours [6]. It is possible to see that ¹⁴⁹Pm insignificantly yields at the use of therapy of tumors of a smaller size of ¹⁷⁷Lu and ¹⁵³Sm. Merit of ¹⁴⁹Pm is presented of gamma radiation with energy 208 keV.

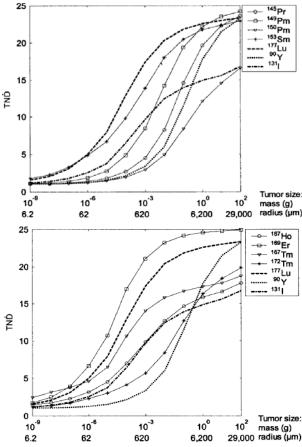


Fig. 1. The tumor-to-normal-tissue mean absorbed dose rate ratio $(TN\dot{D})$ [6]

The essential issue in the palliative treatment of disseminated bone metastases is action of radiation of isotopes by a marrow. Therefore, for therapy of osteal metastases the best properties possess of ¹⁶⁹Er isotopes (Fig. 1). However, absence of the gamma radiation im-

ISSN 1562-6016. BAHT. 2015. №6(100)

pedes diagnostic of deposition of ¹⁶⁹Er in a tumor and in normal tissue during treatment.

The carrier free ¹⁴⁹Pm can be efficiently produced and isolated from an enriched ¹⁴⁸Nd target after irradiating in reactor [7]. The aim of this paper is realize of technology of carrier free ¹⁴⁹Pm by means of photonuclear reaction. The characteristics of ¹⁴⁹Pm is practically coincide with parameters of ¹⁵³Sm (see Table).

RESULTS AND DISCUSSION

The irradiation of neodymium of natural isotopic composition and weighing 50 mg was carried out by means of bremsstrahlung with a maximum energy of 12.5 MeV. Prevalence of isotopes ¹⁴⁸Nd and ¹⁵⁰Nd is 5.73% and 5.62%, respectively. The reaction cross section ¹⁵⁰Nd(γ ,n)¹⁴⁹Nd ($T_{1/2}$ =1.73 hours) \rightarrow ¹⁴⁹Pm at the maximum at 12.5 MeV is 220 mb (Fig. 3). After activation of samples and standards the activity of radioisotopes obtained in reactions ¹⁵⁰Nd(γ ,n)¹⁴⁹Nd has been measured by Ge(Li)-detector with volume 50 cm³ and with energy resolution 3.2 keV in the area of 1332 keV (Fig. 2).

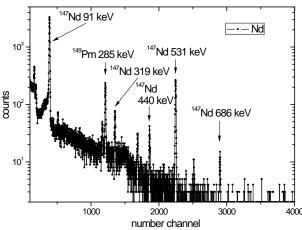


Fig. 2. The spectrum of Nd after irradiated bremsstrahlung with $E_{max} = 12 \text{ MeV}$

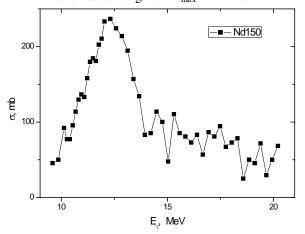


Fig. 3. Cross section of reaction 150 Nd $(\gamma,n)^{149}$ Nd [9]

Reaction ¹⁴⁸Nd(γ ,n)¹⁴⁷Nd ($T_{1/2}$ =10.93 days) \rightarrow ¹⁴⁷Pm ($T_{1/2}$ =2.62 years) (Fig. 4) will lead to low activity ¹⁴⁹Pm provided daily extraction ¹⁴⁹Pm. The rare earth elements of cerium group successfully are separated in a multistage extraction column using a normal tributyl ester of phosphoric acid [8].

The cross section of the thermal neutron capture of daughter isotopes ¹⁴⁹Pm is 40140 b. Therefore, use of ¹⁴⁹Pm of a neutron capture therapy is possible.

On the linear accelerator of electrons of NSC KIPT with an energy of 36 MeV and a current 260 μ A it is possible to produce 0.5 Ci ¹⁴⁹Pm during the day with using of neodymium (30 g) with a natural isotopic composition [10, 11]. In the targets of similar masses, but enriched in ¹⁵⁰Nd, the daily yield can attain 10 Ci for ¹⁴⁹Pm.

Let's notice that obtaining of ¹⁵³Sm with a high specific activity by means of a magnetic separation are undertaken [12].

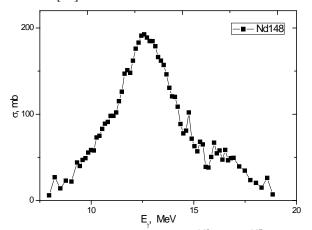


Fig. 4. Cross section of reaction 148 Nd $(\gamma,n)^{147}$ Nd [9]

CONCLUSIONS

The possibility of photonuclear production of ^{149}Pm medical radioisotopes produced by reaction $^{150}Nd(\gamma,n)^{149}Nd$ ($T_{1/2}{=}1.73$ hours) \rightarrow ^{149}Pm was investigated. As a result, there is prepared with high specific activity of ^{149}Pm which is necessary for systemic radionuclide therapy, especially when using peptides with pharmacological side effects.

In NSC KIPT on the linear accelerator of electrons with E=36 MeV and a current 260 μ A it is possible to produce 0.5 Ci ¹⁴⁹Pm during the day by using of neodymium (30 g) of natural isotope composition.

REFERENCES

- 1. D.J. Kwekkeboom, W.H. Bakker, P.P. Kooij, et al. [\begin{align*} \begin{align*} \begin{align*
- D.J. Kwekkeboom, W.H. Bakker, B.L. Kam, et al. Treatment of patients with gastroentero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [¹⁷⁷Lu-DOTA⁰,Tyr³]octreotate // Eur. J. Nucl. Med. Mol. Imaging. 2003, v. 30, p. 417-422.
- F. Forrer, H. Uusijarvi, D. Storch, et al. Treatment with ¹⁷⁷Lu-DOTATOC of patients with relapse of neuroendocrine tumors after treatment with ⁹⁰Y-DOTATOC // *J. Nucl. Med.* 2005, v. 46, p. 1310-1316.
- 4. F. Rosch, E. Forssell-Aronsson. Radio-lanthanides in nuclear medicine. In: Sigel H, ed // Metal Ions and Their Complexes in Medication. New York, NY: Marcel Dekker, Inc. 2004, p. 77-108.

- 5. N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, et al. Kinetics of ¹⁵³Sm oxabiphor in the blood of cancer patients undergoing complex therapy for bone metastasis // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations» (97). 2015, №3, p. 73-75.
- H. Uusijarvi, P. Bernhardt, F. Rosch, et al. Electronand Positron-Emitting Radiolanthanides for Therapy: Aspects of Dosimetry and Production // J. Nucl. Med. 2006, v. 47, p. 807-814.
- 7. A.R. Ketring, G.J. Ehrhardt, M.F. Embree, et al. Production and Supply of High Specific Activity Radioisotopes for Radiotherapy Applications // *Alasbimn Journal*. 2003, v. 5, № 19, p. 122-128.
- 8. G.V. Korpusov, Y.S. Krulov, E.P.Garov. Extraction methods separated rare-earth elements // in *Rare-earth elements*. M.:AS USSR, 1963, p. 211-223.

- 9. P. Carlos, H. Beil, R. Bergere, et al. The giant dipole resonance in the transition region for the neodymium isotopes // *Nucl. Phys.* 1971, v. 172A, p. 437-441.
- 10. F. Monroy-Guzman, F.J. Barreiro, E.J. Salinas, et al. Radiolanthanides Device Production // World J. Nucl. Sci. Tech. 2015, v. 5, p. 111-119.
- 11. V. Varlamov, B.S. Ishhanov, I.M. Kapitonov. *Photonuclear reactions. Modern status experimenttal data.* Moskow: "University book", 2008, 304 p.
- 12. J.M. D'Auriaa, K. Franka, A. Ketringb, et al. Production of high specific activity of ¹⁵³Sm by isotope separation following neutron irradiation // Abs. 8-th Inter. Conf. on Isotopes. 2014, Omnipress, Chicago, USA, p. 115.

Article received 22.09.2015

ФОТОЯДЕРНЫЙ МЕТОД ПРОИЗВОДСТВА Pm-149

Н.П. Дикий, А.Н. Довбня, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, В.Л. Уваров

Для паллиативной терапии больных с метастазами в кости и болевым синдромом успешно используется 153 Sm, который производится на реакторах при облучении изотопа 152 Sm. В используемом радиопрепарате на каждый изотоп 153 Sm приходится около 1000 атомов изотопа 152 Sm, что существенно влияет на кинетику его поступления в опухоль. Производство изотопов, не содержащих примесей других изотопов, предполагается реализовать при помощи фотоядерного производства 149 Pm, который по своим характеристикам практически совпадает с параметрами 153 Sm. Проведено облучение неодима естественного изотопного состава тормозным излучением с максимальной энергией 12,5 МэВ. Для производства 149 Pm использовалась реакция 150 Nd(γ ,n) 149 Nd ($T_{1/2}$ =1,73 часа) \rightarrow 149 Pm. Реакция 148 Nd(γ ,n) 147 Nd ($T_{1/2}$ =10,93 дня) \rightarrow 147 Pm ($T_{1/2}$ =2,62 года) будет создавать малую активность 147 Pm при условии ежедневного выделения 149 Pm. Редкоземельные элементы цериевой группы успешно разделяются в многоступенчатых экстракционных колоннах с использованием нормального трибутилового эфира ортофосфорной кислоты.

ФОТОЯДЕРНИЙ МЕТОД ВИРОБНИЦТВА Pm-149

М.П. Дикий, А.М. Довбня, Ю.В. Ляшко, О.П. Медведсва, Д.В. Медведсв, В.Л. Уваров

Для паліативної терапії хворих з метастазами в кістках і болісному синдромі успішно використовується 153 Sm, що виробляється на реакторах при опроміненні ізотопу 152 Sm. У радіопрепараті, який використовується, на кожен ізотоп 153 Sm приходиться близько 1000 атомів ізотопу 152 Sm, що істотно впливає на кінетику його надходження в пухлину. Виробництво ізотопів, що не містять домішок інших ізотопів, передбачається реалізувати з використанням фотоядерного виробництва 149 Pm, що за своїми характеристиками практично збігається з параметрами 153 Sm. Проведено опромінення неодиму природного ізотопного складу гальмівним випромінюванням з максимальною енергією 12,5 MeB. Для виробництва 149 Pm використовувалася реакція 150 Nd $(\gamma,n)^{149}$ Nd $(T_{1/2}{=}1,73\ \text{год.}) \rightarrow {}^{149}$ Pm. Реакція 148 Nd $(\gamma,n)^{147}$ Nd $(T_{1/2}{=}10,93\ \text{дня}) \rightarrow {}^{147}$ Pm $(T_{1/2}{=}2,62\ \text{роки})$ буде утворювати малу активность 147 Pm за умови щоденного виділення 149 Pm. Рідкоземельні елементи церієвої групи успішно розділяються в багатоступінчастих екстракціонних колонах з використанням нормального трибутилового ефіру ортофосфорної кислоти.