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The interest in the probability distribution function, which describes the position of a heavy charged particle and
direction of motion in matter, while its initial and final coordinates and angles are known, relates to proton imaging
that is currently developing actively. The modern approach to calculating proton trajectories and widths is based on
an approximations (first made by Fermi) that were never explained or justified. In the present work, we study the
origin of the above-mentioned approximations, present the full formula for the probability distribution function, and

show a limitation of the method that appears in the case of full formula.
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1. INTRODUCTION

Modern interest in probability distribution function,
that describes heavy charged particle position and di-
rection of motion in matter, while its initial and final
coordinates and angles are known, relates to proton
imaging that is currently developing actively (see, for
example, [1, 2]). The image quality depends strongly
on the accuracy of the determination of the trajec-
tory of a proton. Unfortunately, the process of proton
interaction with matter differs significantly from X-
rays, and there is no simple relation between the char-
acteristics of the proton and its trajectory within an
object. Due to multiple Coulomb scattering (MCS),
these trajectories are highly complex and depend on
a number of random parameters.

Currently, the approach of [3] is used to calculate
the trajectory of the proton and its width (uncer-
tainty in the trajectory). This approach is based on
the Fermi formula and his method, which was pro-
posed to estimate the spatial distribution of cosmic-
ray particles [4], however this method contains ap-
proximations that were never explained or justified.
Further investigations [5, 6, 7] were focused on a more
accurate implementation of the MCS theory; how-
ever, the method of probability distribution function
construction was not analysed.

In the present work, we study the origin of the
above-mentioned approximations, present the full
formula for the probability distribution function, and
show the limitations of the method in the case of full
formula. The correctness of the Fermi formula is not
the subject of our study.
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2. APPROXIMATE PROBABILITY
DISTRIBUTION FUNCTION

Owing to its random nature, MCS is described using
statistical laws. The possible particle position can be
represented as the probability of finding the particle
at a specific point in space. This distribution function
is given by the Fermi formula [4]
3 2
+2].
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where y is the lateral displacement, 6 is the angular
deflection, ¢ is the thickness, and w is the parameter
depending on the particle energy. All of the distances
are measured in radiation lengths.
By integrating this function over y, one can obtain
the function G(¢, 8), which represents the angular dis-
tribution irrespective of the lateral displacement.
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Similarly, by integrating the function F(t,y,6) over

0, one obtains the function H(¢,y), which gives the

spatial distribution (lateral displacement), indepen-

dent of the angle.
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A probability distribution function with a fixed exit
displacement and angle is constructed by multiplying
two Fermi functions, before and after the point where
this distribution is sought [4].
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The probability for a particle that starts at the
point t = 0,y = 0 with § = 0 and goes through
y = yo with 8 = 6y at the point t = tg to reach the
point t = L,y = y;, with § = 6, (Fig.1) is

PA(thy(),eOa LvyL79L) =
F(to,y0,00)F(L—to,yr —yo— (L—t0)00,0,—00) . (1)
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Fig.1. Particle trajectory

All particular cases: space or (and) angle distri-
butions with a fixed exit displacement and (or) angle
can be obtained by integrating this function with re-
spect to the appropriate variables.

As is observed in Fig.1, the simplifications ac-
cepted in this formula relate to the second Fermi func-
tion. In the approximation of small 6y (tgfy ~ 6),
the distance along the axis ¢’ is substituted with the
distance along the axis t, and the displacement along
the axis y’ is substituted with the displacement along
the axis .

An absolutely correct probability distribution
function with fixed exit displacement and angle
P(to,y0, 00, L,yr,01) constructed on the basis of the
Fermi function should satisfy the condition

/ / P(to, 90,00, L,yr,0r)dyodby =

F(L,yL,01). (2)

An approximate function should not naturally do
so. However, function (1) satisfies equation (2) ex-
actly. This is rather strange and requires a detailed
analysis.

Further simplifications, which completely ignore
fp in the second Fermi function, lead to an absurd
result
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This result is not only unequal to the Fermi function

at the point L, but it also depends on the indefinite
parameter ty, which would have to disappear after
the integration.

3. FULL PROBABILITY DISTRIBUTION
FUNCTION

The construction of the full function should include
rotation of the coordinate system in the second Fermi
function

Pr(to, 0,00, L,yr,01) = F(to,y0,00)F(t',y',0") =
F(to,y0,00)x

F(tcosby + ysinby, —tsinby + y cos b, 0, — o) ,

if
t' =tcosfy + ysinby;

y' = —tsinf + ycosby;
0 =0, —0,.

The probability of finding the particle at a dis-
tance L > tg in a non-rotated coordinate system is

Pr(to, 0,00, L,yr,01) =
F(to, yo,0o)x
F((L —tp)cosby + (yr — yo) sin g,
— (L —tg)sinby + (yr, — yo) cos by, 0, — o) .

This formula shows that the approximations of [4]
consist of transformations

(L —to) cosby + (yr — yo) sinfy —
(L —tg) =cosby =1,sin0y =0;
— (L —to)sinbo + (yr — yo) cos by —
— (L —t9)00 + yr, — yo = cosfp = 1,sin by = 0 .
Such transformations seem contradictory. How-
ever, the power series expansion of the function P,

with respect to the variables 6y and yo/to. shows that
Pr is equal to P4 up to the terms of second order

Pr(to,y0,00, L,yr,0L) =

2
PA(t07y0a907L7yLa9L)+O (907 (y;)> 790??(?) )

This means that the approximation of [4] is the result
of correct mathematical expansion in small param-
eters. Clearly, the difference between Pp and Pa
becomes more evident with the increase of #y and
Yo/to. In practice, the difference will increase with
the decrease in w (particle energy) and the passed
distance (to) increase (Fig.2).
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Fig.2. Pr and P4 behaviour with the parameter
change

The particle trajectory is constructed by integrat-
ing Pr (or Pa) over . After integration, the differ-
ence in the distribution maximum (particle trajec-
tory) and its width (uncertainty in the trajectory)
not always can be ignored (Fig.3).
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Fig.3. Pr and P4 integrated over 6

4. PROBLEMS WITH THE METHOD

The Fermi probability distribution function has its
limitations. It only describes the probability in the
“forward” direction, i.e. for t¢ > 0. For t < 0, the
distribution gives implausible results (Fig.4).
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Fig.4. Example of the Fermi function

In the case of Pp, this means that there is an ap-
plication limit for the second Fermi function (Fig.5)

t'>0— (L—to)COSH()—F(yL —yo)Sinao >0. (3)

The
in Fig.6.
0y where t’
ond Fermi

reason for this restriction is shown
For each 1y, there are values of
becomes negative, and the

function gives an incorrect

sec-
result.
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function
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Fig.6. Angle 0y with negative t’

The 69 limits depend on the sign of y;, —yo (Fig.7)
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Fig.7. Angle 0y with negative t’

yr — Yo >0, (—a< by <m—a)t2mn,ne N;

YL — Yo < 0, (-7 —a < by < —a)£2mn,n € N,

<Lt0>
o = arctan | ——
YL — Yo

where

is the angle between the line ¢ = L and the straight
line that connects the points (yo,to) and (yz,L).



This limit is especially important for the calcu-
lation of the particle trajectory. The integration of
Pr over 6y can not be done from minus infinity to
infinity, as it was in the case of P4. The approx-
imate probability distribution function has no such
problem: L —ty > 0.

The same remark can be made about yy. For each
0y, there are yy where t’ becomes negative, and cor-
responding limits can be calculated from (3).

Another problem of the method deals with sec-
tors A and B in Fig.8. In these sectors, ¢’ is positive,

and the probability of find-
ing the particle is small,
but is non-zero. Clearly,
i further integration over yq
and 6y will not nullify this
probability. This indicates
| ”backscattering”. The par-
t  ticles first come to the point
t = to and then return to a
point t < tg. Such a process
was not considered during
y,  the construction of the dif-
ferential equation for Fermi
function. It was assumed
that F(t+ At,y,0) depends
on F(t,y,0) only ([4], page
266). Thus, the full proba-
bility distribution function
is not equal to the Fermi

B ot
Fig.8. Angle 6
with negative t’

probability distribution function, and it is not rea-
sonable to expect realization of the equation (2).
5. CONCLUSIONS

The analysis of the simplifications adopted earlier in

the construction of the probability distribution func-
tion from two Fermi functions shows that it repre-
sents the correct mathematical expansion, with re-
spect to small parameters, of the full probability dis-
tribution function.

Unlike the approximate, the full probability dis-
tribution function has a limitation related to the lim-
itation of the Fermi formula itself.

When constructed with the proposed method, the
full probability distribution function can not be con-
sidered identical to the Fermi probability distribution
function.
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MHOTOKPATHOE KYJIOHOBCKOE PACCESTHUE C ®PUKCUPOBAHHBIMU
HAYAJIbBHBIMU 1 KOHEYHBIMU ITAPAMETPAMM B IIPUBJIN2 KEHUN ®EPMU
P. K. JI. Cunsa, B. Jensx, C. A. I[Tauwyx, Y. P. Cueaun

Uurepec ¥ pyHKIMM pacrpe/ie/ieHns BEPOSITHOCTH, KOTOpasl OMHUCHIBAET MMOJI0KEHNE W HATIPABJICHNE IBUKEHUS TAXKE-
JIOH 3apsi>KEeHHON YaCTUIIBI B BEIIECTBE B CIydae, KOTJa €€ HAYAJIbHBIE U KOHEYHBbIE KOOPJAMHATHI U YIJIbl W3BECTHbI,
CBsI3aH C METOJMKON CO3/aHusl n300paKeHus IPU IIOMOINK IIPOTOHOB, KOTOPas AKTHUBHO PA3BUBAETCH B HACTOSIIEE
Bpemsi. COBPEMEHHBII MOIX0/T K PACUETY TPACKTOPHUM ITPOTOHA U €8 NIMPUHBI OCHOBBIBAETCS HA MPUOJIVKEHUH (BIEep-
BoIe caenanaoM Pepmm), KOTOPOE HUKOTIA He ObLI0 00bACHEHO nm 060CHOBAHO. B HacToAmEel paboTe MBI UCCIeIyeM
[IPOUCXOXKIEHUE BBIIIEYIIOMSHYTOr0 IPUOJIMKEHUsl, IPUBOAUM HOJIHYIO (hopMysty [uis (DyHKIMU pacupee/eHus Be-
POSITHOCTH M TIOKA3bIBAEM OTPAHUYIEHUST METOA, TTOSIBJISIONINECS B CIy9Iae MOJTHON (HOPMYIIBI.

BATATOPA3OBE KYJIOHIBCBKE PO3CISdHHA 3 BAPIKCOBAHMMU ITOYATKOBMU
I KIHHEBUMU ITAPAMETPAMMUM B HABJIN2KEHHI ®EPMI
P.K. JI. Cinsa, B. Jenax, C. A. IHawyx, Y. P. Cuenin

BarikaBieHicTh ¥ (QYHKINT PO3MOMIILY BIpOTIIHOCTI, IO OMUCYE TOJOXKEHHS i HATPSIMOK DYXY BayKKOI 3apsIrKeHOl
CTBOpEHHs 300parkeHHs 3a JOIOMOIOI0 IPOTOHIB, KA aKTUBHO PO3BUBaEcThca B Ham dac. CydacHuil maxim no po-
3paxyHKy TPAEKTOPii MpOTOHA Ta ii MupuHU 6a3yeThcs Ha HabamkenHi (Brmeprre 3pobienomy ®epwmi), ke HIKOIHA
He Oys10 po3’scHeHo abo OOrpyHTOBaHO. Y JaHiil pobOTI MU JOCTIKYEMO TOXOIKEHHST BUIIE3raIaHOT0 HAOJIMKEHHS,
HABOAMMO TIOBHY (opMysty s GYHKINI PO3IO/ILIy BiPOTIAHOCT]I Ta MOKA3yeEMO 00OMEKEHHsI METOA, IO 3’ ABISIOTHCS
y BUIAJKY TOBHOI (HOPMYIIH.
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