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The interest in the probability distribution function, which describes the position of a heavy charged particle and

direction of motion in matter, while its initial and final coordinates and angles are known, relates to proton imaging

that is currently developing actively. The modern approach to calculating proton trajectories and widths is based on

an approximations (first made by Fermi) that were never explained or justified. In the present work, we study the

origin of the above-mentioned approximations, present the full formula for the probability distribution function, and

show a limitation of the method that appears in the case of full formula.

PACS: 41.75.Ak

1. INTRODUCTION

Modern interest in probability distribution function,
that describes heavy charged particle position and di-
rection of motion in matter, while its initial and final
coordinates and angles are known, relates to proton
imaging that is currently developing actively (see, for
example, [1, 2]). The image quality depends strongly
on the accuracy of the determination of the trajec-
tory of a proton. Unfortunately, the process of proton
interaction with matter differs significantly from X-
rays, and there is no simple relation between the char-
acteristics of the proton and its trajectory within an
object. Due to multiple Coulomb scattering (MCS),
these trajectories are highly complex and depend on
a number of random parameters.

Currently, the approach of [3] is used to calculate
the trajectory of the proton and its width (uncer-
tainty in the trajectory). This approach is based on
the Fermi formula and his method, which was pro-
posed to estimate the spatial distribution of cosmic-
ray particles [4], however this method contains ap-
proximations that were never explained or justified.
Further investigations [5, 6, 7] were focused on a more
accurate implementation of the MCS theory; how-
ever, the method of probability distribution function
construction was not analysed.

In the present work, we study the origin of the
above-mentioned approximations, present the full
formula for the probability distribution function, and
show the limitations of the method in the case of full
formula. The correctness of the Fermi formula is not
the subject of our study.

2. APPROXIMATE PROBABILITY
DISTRIBUTION FUNCTION

Owing to its random nature, MCS is described using
statistical laws. The possible particle position can be
represented as the probability of finding the particle
at a specific point in space. This distribution function
is given by the Fermi formula [4]
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where y is the lateral displacement, θ is the angular
deflection, t is the thickness, and ω is the parameter
depending on the particle energy. All of the distances
are measured in radiation lengths.

By integrating this function over y, one can obtain
the function G(t, θ), which represents the angular dis-
tribution irrespective of the lateral displacement.
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Similarly, by integrating the function F (t, y, θ) over
θ, one obtains the function H(t, y), which gives the
spatial distribution (lateral displacement), indepen-
dent of the angle.
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A probability distribution function with a fixed exit
displacement and angle is constructed by multiplying
two Fermi functions, before and after the point where
this distribution is sought [4].
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The probability for a particle that starts at the
point t = 0, y = 0 with θ = 0 and goes through
y = y0 with θ = θ0 at the point t = t0 to reach the
point t = L, y = yL with θ = θL (Fig.1) is

PA(t0, y0, θ0, L, yL, θL) =

F (t0, y0, θ0)F (L−t0, yL−y0−(L−t0)θ0, θL−θ0) . (1)

Fig.1. Particle trajectory

All particular cases: space or (and) angle distri-
butions with a fixed exit displacement and (or) angle
can be obtained by integrating this function with re-
spect to the appropriate variables.

As is observed in Fig.1, the simplifications ac-
cepted in this formula relate to the second Fermi func-
tion. In the approximation of small θ0 (tgθ0 ∼ θ0),
the distance along the axis t ’ is substituted with the
distance along the axis t, and the displacement along
the axis y ’ is substituted with the displacement along
the axis y.

An absolutely correct probability distribution
function with fixed exit displacement and angle
P (t0, y0, θ0, L, yL, θL) constructed on the basis of the
Fermi function should satisfy the condition∫ ∞

−∞

∫ ∞

−∞
P (t0, y0, θ0, L, yL, θL)dy0dθ0 =

F (L, yL, θL) . (2)

An approximate function should not naturally do
so. However, function (1) satisfies equation (2) ex-
actly. This is rather strange and requires a detailed
analysis.

Further simplifications, which completely ignore
θ0 in the second Fermi function, lead to an absurd
result
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This result is not only unequal to the Fermi function
at the point L, but it also depends on the indefinite
parameter t0, which would have to disappear after
the integration.

3. FULL PROBABILITY DISTRIBUTION
FUNCTION

The construction of the full function should include
rotation of the coordinate system in the second Fermi
function

PF (t0, y0, θ0, L, yL, θL) = F (t0, y0, θ0)F (t′, y′, θ′) =

F (t0, y0, θ0)×
F (t cos θ0 + y sin θ0,−t sin θ0 + y cos θ0, θL − θ0) ,

if

t′ = t cos θ0 + y sin θ0 ;

y′ = −t sin θ0 + y cos θ0 ;

θ′ = θL − θ0 .

The probability of finding the particle at a dis-
tance L > t0 in a non-rotated coordinate system is

PF (t0, y0, θ0, L, yL, θL) =

F (t0, y0, θ0)×
F ((L− t0) cos θ0 + (yL − y0) sin θ0,

− (L− t0) sin θ0 + (yL − y0) cos θ0, θL − θ0) .

This formula shows that the approximations of [4]
consist of transformations

(L− t0) cos θ0 + (yL − y0) sin θ0 →
(L− t0) ≡ cos θ0 = 1, sin θ0 = 0 ;

− (L− t0) sin θ0 + (yL − y0) cos θ0 →
− (L− t0)θ0 + yL − y0 ≡ cos θ0 = 1, sin θ0 = θ0 .

Such transformations seem contradictory. How-
ever, the power series expansion of the function PF ,
with respect to the variables θ0 and y0/t0. shows that
PF is equal to PA up to the terms of second order
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This means that the approximation of [4] is the result
of correct mathematical expansion in small param-
eters. Clearly, the difference between PF and PA

becomes more evident with the increase of θ0 and
y0/t0. In practice, the difference will increase with
the decrease in ω (particle energy) and the passed
distance (t0) increase (Fig.2).
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Fig.2. PF and PA behaviour with the parameter
change

The particle trajectory is constructed by integrat-
ing PF (or PA) over θ0. After integration, the differ-
ence in the distribution maximum (particle trajec-
tory) and its width (uncertainty in the trajectory)
not always can be ignored (Fig.3).

Fig.3. PF and PA integrated over θ0

4. PROBLEMS WITH THE METHOD

The Fermi probability distribution function has its
limitations. It only describes the probability in the
“forward” direction, i.e. for t > 0. For t < 0, the
distribution gives implausible results (Fig.4).

Fig.4. Example of the Fermi function

In the case of PF , this means that there is an ap-
plication limit for the second Fermi function (Fig.5)

t′ > 0 → (L− t0) cos θ0 + (yL − y0) sin θ0 > 0 . (3)

The reason for this restriction is shown
in Fig.6. For each y0, there are values of
θ0 where t ’ becomes negative, and the sec-
ond Fermi function gives an incorrect result.

Fig.5. Example of the full probability distribution
function

Fig.6. Angle θ0 with negative t’

The θ0 limits depend on the sign of yL−y0 (Fig.7)

Fig.7. Angle θ0 with negative t’

yL − y0 > 0, (−α < θ0 < π − α)± 2πn, n ∈ N ;

yL − y0 < 0, (−π − α < θ0 < −α)± 2πn, n ∈ N ,

where

α = arctan

(
L− t0
yL − y0

)
is the angle between the line t = L and the straight
line that connects the points (y0,t0) and (yL,L).
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This limit is especially important for the calcu-
lation of the particle trajectory. The integration of
PF over θ0 can not be done from minus infinity to
infinity, as it was in the case of PA. The approx-
imate probability distribution function has no such
problem: L− t0 > 0.

The same remark can be made about y0. For each
θ0, there are y0 where t ’ becomes negative, and cor-
responding limits can be calculated from (3).

Another problem of the method deals with sec-
tors A and B in Fig.8. In these sectors, t ’ is positive,

Fig.8. Angle θ0
with negative t’

and the probability of find-
ing the particle is small,
but is non-zero. Clearly,
further integration over y0
and θ0 will not nullify this
probability. This indicates
”backscattering”. The par-
ticles first come to the point
t = t0 and then return to a
point t < t0. Such a process
was not considered during
the construction of the dif-
ferential equation for Fermi
function. It was assumed
that F (t+∆t, y, θ) depends
on F (t, y, θ) only ([4], page
266). Thus, the full proba-
bility distribution function
is not equal to the Fermi

probability distribution function, and it is not rea-
sonable to expect realization of the equation (2).

5. CONCLUSIONS

The analysis of the simplifications adopted earlier in

the construction of the probability distribution func-
tion from two Fermi functions shows that it repre-
sents the correct mathematical expansion, with re-
spect to small parameters, of the full probability dis-
tribution function.

Unlike the approximate, the full probability dis-
tribution function has a limitation related to the lim-
itation of the Fermi formula itself.

When constructed with the proposed method, the
full probability distribution function can not be con-
sidered identical to the Fermi probability distribution
function.

ACKNOWLEDGEMENTS

The authors would like to thank the Brazilian agencies

CNPq, CAPES, and Fundação Araucária.
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ÌÍÎÃÎÊÐÀÒÍÎÅ ÊÓËÎÍÎÂÑÊÎÅ ÐÀÑÑÅßÍÈÅ Ñ ÔÈÊÑÈÐÎÂÀÍÍÛÌÈ

ÍÀ×ÀËÜÍÛÌÈ È ÊÎÍÅ×ÍÛÌÈ ÏÀÐÀÌÅÒÐÀÌÈ Â ÏÐÈÁËÈÆÅÍÈÈ ÔÅÐÌÈ

Ð.Ê.Ë.Ñèëâà, Â.Äåíÿê, Ñ.À.Ïàùóê, Ó.Ð.Ñ÷åëèí

Èíòåðåñ ê ôóíêöèè ðàñïðåäåëåíèÿ âåðîÿòíîñòè, êîòîðàÿ îïèñûâàåò ïîëîæåíèå è íàïðàâëåíèå äâèæåíèÿ òÿæ¼-
ëîé çàðÿæåííîé ÷àñòèöû â âåùåñòâå â ñëó÷àå, êîãäà å¼ íà÷àëüíûå è êîíå÷íûå êîîðäèíàòû è óãëû èçâåñòíû,
ñâÿçàí ñ ìåòîäèêîé ñîçäàíèÿ èçîáðàæåíèÿ ïðè ïîìîùè ïðîòîíîâ, êîòîðàÿ àêòèâíî ðàçâèâàåòñÿ â íàñòîÿùåå
âðåìÿ. Ñîâðåìåííûé ïîäõîä ê ðàñ÷¼òó òðàåêòîðèè ïðîòîíà è å¼ øèðèíû îñíîâûâàåòñÿ íà ïðèáëèæåíèè (âïåð-
âûå ñäåëàííîì Ôåðìè), êîòîðîå íèêîãäà íå áûëî îáúÿñíåíî èëè îáîñíîâàíî. Â íàñòîÿùåé ðàáîòå ìû èññëåäóåì
ïðîèñõîæäåíèå âûøåóïîìÿíóòîãî ïðèáëèæåíèÿ, ïðèâîäèì ïîëíóþ ôîðìóëó äëÿ ôóíêöèè ðàñïðåäåëåíèÿ âå-
ðîÿòíîñòè è ïîêàçûâàåì îãðàíè÷åíèÿ ìåòîäà, ïîÿâëÿþùèåñÿ â ñëó÷àå ïîëíîé ôîðìóëû.

ÁÀÃÀÒÎÐÀÇÎÂÅ ÊÓËÎÍIÂÑÜÊÅ ÐÎÇÑIßÍÍß Ç ÇÀÔIÊÑÎÂÀÍÈÌÈ ÏÎ×ÀÒÊÎÂÈÌÈ

I ÊIÍÖÅÂÈÌÈ ÏÀÐÀÌÅÒÐÀÌÈ Â ÍÀÁËÈÆÅÍÍI ÔÅÐÌI

Ð.Ê.Ë.Ñiëâà, Â.Äåíÿê, Ñ.À.Ïàùóê, Ó.Ð.Ñ÷åëií

Çàöiêàâëåíiñòü ó ôóíêöi¨ ðîçïîäiëó âiðîãiäíîñòi, ùî îïèñó¹ ïîëîæåííÿ i íàïðÿìîê ðóõó âàæêî¨ çàðÿäæåíî¨
÷àñòèíêè ó ðå÷îâèíi ó âèïàäêó, êîëè âiäîìi ¨¨ ïî÷àòêîâi i êiíöåâi êîîðäèíàòè i êóòè, ïîâ'ÿçàíà ç ìåòîäiêîþ
ñòâîðåííÿ çîáðàæåííÿ çà äîïîìîãîþ ïðîòîíiâ, ÿêà àêòèâíî ðîçâèâà¹òüñÿ â íàø ÷àñ. Ñó÷àñíèé ïiäõiä äî ðî-
çðàõóíêó òðà¹êòîði¨ ïðîòîíà òà ¨¨ øèðèíè áàçó¹òüñÿ íà íàáëèæåííi (âïåðøå çðîáëåíîìó Ôåðìi), ÿêå íiêîëè
íå áóëî ðîç'ÿñíåíî àáî îáãðóíòîâàíî. Ó äàíié ðîáîòi ìè äîñëiäæó¹ìî ïîõîäæåííÿ âèùåçãàäàíîãî íàáëèæåííÿ,
íàâîäèìî ïîâíó ôîðìóëó äëÿ ôóíêöi¨ ðîçïîäiëó âiðîãiäíîñòi òà ïîêàçó¹ìî îáìåæåííÿ ìåòîäà, ùî ç'ÿâëÿþòüñÿ
ó âèïàäêó ïîâíî¨ ôîðìóëè.
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