
COMPUTING AND MODELLING SYSTEMS

GRAPHICS PROCESSOR EFFICIENCY FOR REALIZATION

OF RAPID TABULAR COMPUTATIONS

V.A.Dudnik,∗V. I.Kudryavtsev, S.A.Us, M.V.Shestakov
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine

(Received February 19, 2016)

Capabilities of graphics processing units (GPU) and central processing units (CPU) have been investigated for

realization of fast-calculation algorithms with the use of tabulated functions. The realization of tabulated functions

is exemplified by the GPU/CPU architecture-based processors. Comparison is made between the operating efficiencies

of GPU and CPU, employed for tabular calculations at different conditions of use. Recommendations are formulated

for the use of graphical and central processors to speed up scientific and engineering computations through the use

of tabulated functions.

PACS: 89.80.+h, 89.70.+c, 01.10.Hx

1. INTRODUCTION

The tabular calculations imply preliminary compu-
tations of the table (array) of single argument val-
ues and the respective function values. This pro-
vides a way of obtaining further the function values
for specific argument values immediately, without ad-
ditional calculations. This method is used in cases,
where the domain of a function is a discrete finite set.
In cases when it is necessary to obtain the function
values, which correspond to the intermediate values
of argument and which are not tabulated, the inter-
polation procedure is used. The use of tabular pro-
cedures provides in many cases a multiple speedup
of calculations without making additional special ef-
forts.

The most popular fields of use of tabular proce-
dures are exemplified by audio-visual signal process-
ing applications, programs for numerical filtering of
data coming from digitizers, tomography image for-
mation complexes, digital radiographic systems. All
these cases call for provision (with no great extra ex-
pense) of data array processing speed higher than
that provided by conventional computers.

2. PECULIARITIES OF MEDICAL IMAGE
BRIGHTNESS EQUALIZATION

One of the necessary operations in digital imaging is
the procedure of image brightness equalization that
can improve the diagnostic value of the images. The
necessity of this procedure stems from the peculiarity
of the optical system employed for image acquisition.
To enhance the sensitivity of the optical systems
(and, as the final result, to reduce the radiation dose
for the patient under examination), large-diameter
high-speed lenses are used. The brightness transfer
coefficient of this lens has a strongly marked shape

of a parabola, i.e., the obtained images are sub-
stantially less bright on the periphery than at the
center (Fig.1). Below we describe the operational
experience of the rapid brightness equalization func-
tion required for formation of X-ray medical images.

Fig.1. The brightness transfer coefficient of the
lens and the image brightness equalization function

The general form of the brightness equalization
function is:

Pixel_New_Light = F(x, y, Current_Light)

where x, y are the coordinates of the

equalized image element (pixel);

Current_Light is the brightness value of the

equalized pixel.

In our case, for brightness equalization the following
function was used:

NewPixelLight[x,y] = A[x,y] * Pixel_Light2[x,y]

+ B[x,y] * Pixel_Light[x,y]+C[x,y];

where A, B, C denote the arrays of coefficients
(precomputed on the basis of analysis of different-
brightness images), which provide compensation of
brightness adjusting of the lens.

∗Corresponding author. E-mail address: dudnik@mail.ru

118 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, N5(105).
Series: Nuclear Physics Investigations (67), p.118-120.



At first, the program that fulfilled the brightness
equalization by the conventional method was used. In
what follows we give a fragment of C-based program,
which serves for the brightness equalization:

//Brightness correction for all image

elements

for(i=0; i<SizeOfPartLightAlign; i++)//

Image pixel cycle

{

Pixel_Light = A[k] * (double)ImageData[k] *

(double)ImageData[k] + B[k] *

(double)ImageData[k] + C[k];

}

// Image pixel cycle

Rather time-consuming operations (i.e., multiplica-
tion, conversions from integer-to-floating point for-
mat and vice versa) employed in the given program
fragment, failed to provide the specified time of im-
age framing. Therefore, an attempt was undertaken
to realize this function by means of tabular proce-
dures.

Below, we give the C-based program fragment,
which fulfils the brightness equalization through the
tabular procedure:

// Table function of brightness

correction for all image elements

for(i=0; i<SizeOfPartLightAlign; i++).

// Image pixel cycle

{

AlignImage[i] =[Image[i]];

// Image pixel cycle

}

// Image pixel cycle

3. CPU-BASED EQUALIZATION BY THE
TABLE METHOD

The use of table methods for conventional CPU has
revealed a strong dependence of the execution time
on the table size (Figs. 2 and 3). This made the use
of table methods for conventional CPU impossible,
considering that beginning approximately with the
table size of 28 MB, the table methods worked slower
than the standard computations procedures. Still,
the formation of obtained work images called for the
tables of the size of about 600 MB, and with these ta-
ble sizes the table methods appeared to work slower

than the usual computations. So, for image forma-
tion we had to resort to using a powerful computer
with 8 computation CPU cores ) (note that in spite
of that, only a 6-fold speedup was attained). Figs. 2
and 3, given below, show the brightness adjusting
time versus the size of the table of values of the func-
tion.

Fig.2. Image brightness adjusting time versus the
size of the table of values of the equalization function
for the CPU

Fig.3. Image brightness adjusting time versus the
size of the table of values of the equalization function
for the GPU

4. EQUALIZATION BY THE CPU-BASED
TABLE METHOD

A similar tabulated function of brightness equaliza-
tion was realized with the use of the GPU. Fig. 4
shows the dependence of the function-execution time
on the size of the table of values for the GPU. It is
obvious from the figure that the equalization function
execution time depends only slightly on the size of
the table of function values.

5. ANALYSIS OF POSSIBLE CAUSES OF
TABLE METHOD WORK SLOWDOWN

The slowdown is most likely due to some peculiar-
ities in the operation of the page-segment memory
addressing, which is used in the CPU architecture.
The computation processes in the CPU are performed
in the dedicated memory spaces. The virtual space
of the process memory area is divided into segments,
and in turn, each segment is divided into virtual
pages numbered within the segment. The random-
access memory is mapped into physical pages. The
structure of memory addressing is shown in Figs. 4
and 5. For speed up the addressing process, the CPU

119



Intel architecture makes use of translation lookaside
buffers and the data buffer (cash). As to our case, all
the pages with function values resided in the random-
access memory. Therefore, as may be supposed, the
slowdown of memory access was determined by the
peculiarities of Intel processor architecture and was
connected with exhaustion of the translation looka-
side buffer store capacity of the CPU.

Fig.4. Structure of memory addressing the CPU

Fig.5. Structure of direct memory addressing in the
GPU architecture

For the GPU memory access, an easier scheme of
direct memory addressing is used. For that reason
the table methods for the GPU have appeared more
efficient and less dependent on table sizes.

6. CONCLUSIONS

The comparison between the efficiencies of GPU and
CPU applications for tabular calculations has shown
that unlike the CPU case, with the use of GPU the
computation time of tabulated function values is de-
pends only slightly on the data array size. This
gives grounds to recommend the use of tabulated
functions for performing GPU-based computations of
fragments of time-critical scientific and engineering
tasks.

References

1. NVIDIA, ”Fermi: NVIDIA’s Next Generation CUDA
Compute Architecture,” 2009;

http://www.nvidia.com/content/PDF/

fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf.

2. A. Zubinsky. NVIDIA Cuda: unification of graph-
ics and computations. (In Russian). 8 May, 2007.
http://itc.bf/node/27969

3. David Luebke. Graphical processors - not
only for graphics. (Russian translation)
http://www.osp.ru/os/2007/02/4106864/

4. V.Dudnik, V.Kudryavtsev, T.Sereda, S.Us,
M.Shestakov. Using of opportunities of graphic
processors for acceleration of scientific and technical
calculations //PAST. 2009, N3, p.120-123.

5. David Luebke, Greg Humphreys. How GPU Work.

IEEE Computer, February, 2007. IEEE Computer

Society, 2007

ÝÔÔÅÊÒÈÂÍÎÑÒÜ ÈÑÏÎËÜÇÎÂÀÍÈß ÃÐÀÔÈ×ÅÑÊÈÕ ÏÐÎÖÅÑÑÎÐÎÂ (GPU)
ÄËß ÐÅÀËÈÇÀÖÈÈ ÔÓÍÊÖÈÉ ÁÛÑÒÐÛÕ ÒÀÁËÈ×ÍÛÕ ÂÛ×ÈÑËÅÍÈÉ

Â.À.Äóäíèê, Â.È.Êóäðÿâöåâ, Ñ.À.Óñ, Ì.Â.Øåñòàêîâ

Âûïîëíåíî èññëåäîâàíèå âîçìîæíîñòåé èñïîëüçîâàíèÿ ãðàôè÷åñêèõ ïðîöåññîðîâ (GPU) è ïðîöåññî-
ðîâ îáû÷íîé àðõèòåêòóðû (CPU) äëÿ ðåàëèçàöèè àëãîðèòìîâ áûñòðûõ âû÷èñëåíèé ñ ïîìîùüþ òàá-
ëè÷íûõ ôóíêöèé. Ïðèâåäåíû ïðèìåðû ðåàëèçàöèè òàáëè÷íûõ ôóíêöèé äëÿ ïðîöåññîðîâ àðõèòåêòóð
GPU è CPU. Ñäåëàíî ñðàâíåíèå ýôôåêòèâíîñòè ïðèìåíåíèÿ GPU è CPU äëÿ òàáëè÷íûõ âû÷èñëåíèé â
ðàçëè÷íûõ óñëîâèÿõ èñïîëüçîâàíèÿ. Ñôîðìóëèðîâàíû ðåêîìåíäàöèè ïî èñïîëüçîâàíèþ ãðàôè÷åñêèõ
è îáû÷íûõ ïðîöåññîðîâ äëÿ óñêîðåíèÿ íàó÷íî-òåõíè÷åñêèõ ðàñ÷¼òîâ çà ñ÷¼ò ïðèìåíåíèÿ òàáëè÷íûõ
ôóíêöèé.

ÅÔÅÊÒÈÂÍIÑÒÜ ÂÈÊÎÐÈÑÒÀÍÍß ÃÐÀÔI×ÍÈÕ ÏÐÎÖÅÑÎÐIÂ (GPU) ÄËß
ÐÅÀËIÇÀÖI� ÔÓÍÊÖIÉ ØÂÈÄÊÈÕ ÒÀÁËÈ×ÍÈÕ ÎÁ×ÈÑËÅÍÜ

Â.Î.Äóäíiê, Â. I.Êóäðÿâöåâ, Ñ.Î.Óñ, Ì.Â.Øåñòàêîâ

Âèêîíàíî äîñëiäæåííÿ ìîæëèâîñòåé âèêîðèñòàííÿ ãðàôi÷íèõ ïðîöåñîðiâ (GPU) i ïðîöåñîðiâ çâè÷àéíî¨
àðõiòåêòóðè (CPU) äëÿ ðåàëiçàöi¨ àëãîðèòìiâ øâèäêèõ îá÷èñëåíü çà äîïîìîãîþ òàáëè÷íèõ ôóíêöié.
Ïðèâåäåíi ïðèêëàäè ðåàëiçàöi¨ òàáëè÷íèõ ôóíêöié äëÿ ïðîöåñîðiâ àðõiòåêòóðè GPU i CPU. Âèêî-
íàíî ïîðiâíÿííÿ åôåêòèâíîñòi çàñòîñóâàííÿ GPU i CPU äëÿ òàáëè÷íèõ îá÷èñëåíü â ðiçíèõ óìîâàõ
âèêîðèñòàííÿ. Ñôîðìóëüîâàíi ðåêîìåíäàöi¨ ïî âèêîðèñòàííþ ãðàôi÷íèõ i çâè÷àéíèõ ïðîöåñîðiâ äëÿ
ïðèñêîðåííÿ íàóêîâî-òåõíi÷íèõ ðîçðàõóíêiâ çà ðàõóíîê çàñòîñóâàííÿ òàáëè÷íèõ ôóíêöié.

120


