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A spectral processing program ”GAMMAPEAKS”, approximating the peaks in the γ-spectra by simple Gaussian,

Gaussian with variable variance and sectionally defined function, in which the peak center is described by the simple

Gaussian, and the edges – in the form of an exponent, has been developed. For the approximation we used conjugate

gradient method by which the sum of squared deviations of approximating function values and values in the range of

channels belonging to the peak was minimized. The developed algorithm allows with sufficient precision to determine

the area under the peak in the spectrum needed to determine the differential scattering cross section.

PACS: 25.40.Lw

1. INTRODUCTION

One of the main issues of γ-spectroscopy is the pro-
cessing and analysis of γ-spectra obtained from ex-
perimental studies of nuclear reactions. Development
and improvement of semiconductor detectors and an-
alyzers for the measurement of the complex γ-spectra
requires the use of modern computing tools to process
experimental results.

Currently, firms producing equipment for detec-
tors and spectrometric analysis, complement its pro-
duction software analysis and processing of γ-spectra.

In the analyzing of γ-spectra with the help
of programs such as GammaVision, BaltiSpectr,
AnGamma et al., differences in the definition of ar-
eas under some peaks reach 25%, which affects the
precision of the determination of intensities γ-lines
of the corresponding peaks. This leads to large im-
precisions in the calculations of various nuclear re-
actions parameters (scattering cross sections, radia-
tion strength functions (RSF), and so on). The pur-
pose of this paper is to analyze the peak processing in
γ-spectra using as much as possible precision approx-
imation of a single peak form (SPF). It achieves by
using a Gaussian function with a variable variance.

The main tasks of processing γ-spectra measured
by semiconductor and scintillation detectors are a
precision description of the SPF and processing of
overlapping peaks. The shape of the peak is deter-
mined by many physical processes associated with the
interaction of the detected particles (γ-rays) with the
detector material, as well as the quality of the detec-
tor and electronic equipment. Attempts to describe
the SPF, taking into account these processes encount
substantial difficulties, because expressions used to
describe the SPF are bulky and contain a large num-
ber of unknown parameters. Therefore, usually to
approximate SPF try to use a variety of empirical
and phenomenological expression.

2. PROBLEM DEFINITION

Most programs used for processing of γ-spectra used
as processing models of standard Gaussian distribu-
tion with constant variance, described by the formula

f(x) = A exp

{
− (x−B)2

2∆2

}
, (1)

where A represents the peak amplitude, B – the peak
center position, ∆ – the variance.

Since the peaks in the γ-spectra are often
non-central, in the present paper to describe
the SPF in addition to the above functions we
used a Gaussian function with a variable vari-
ance, and sectionally defined function, in which the
peak center is described by the usual Gaussian,
and the edges – in the form of an exponent.

The Gauss function with variable variance [1] can
be described by the expression

f(x) = A exp

{
− (x−B)2

∆(x)

}
, (2)

where ∆(x) is a parameter describing the peak width
(variable variance). From the results of analysis of
a large number of peaks, it was found that in most
cases, this parameter has the shape of a hyperbola
and can be represented as

∆(x) = |C|+ |D|
√
|E|(x−B − F )2 + 1, (3)

where C and D describe the peak width, E and F –
the peak widening and peak asymmetry respectively.

The sectionally defined function describing par-
tially by the gaussian and the exponents [2], can be
described by the following: when x < B − C, the
function is

f(x) = A exp

{
|C|(2(x−B) + |C|)

2∆2

}
, (4)

where the parameter C is fixed at 2, 355∆. If x >
B +D, the function has the form

f(x) = A exp

{
|D|(2(B − x) + |D|)

2∆2

}
, (5)
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where the parameter D is initially set equal to ∆/2,
and changes during the approximation, in the other
cases, this function has the form of a usual Gaus-
sian with constant variance. Parameters A and B
in this function determines the height of the peak
and its center position, respectively. Expressions for
this function was taken from [3].

Coefficients C, D and E in the formula (3) and
the coefficients C and D in the formula (4) and (5)
are taken modulo, because ∆(x) in Gaussian function
must be non-negative, and the calculations of the ex-
pressions for the exponents in the case of sectionally
defined function at negative coefficients may lead to
overflow.

3. APPROXIMATION METHOD

When approximating the peak of the various func-
tions deviation of the experimental data obtained
from the calculated using the approximate function
is calculated by the method of least squares. It
was necessary to minimize the sum of squared devia-
tions of the experimental data obtained from mathe-
matical given function that approximates the peak
in spectrum. For this purpose one used an itera-
tive method of finding the minimum function which
is called conjugate gradient method. This method was
used for the fitting of peaks approximating function
parameters so that the sum of squared deviation be-
tween values calculated by this function and the ex-
perimentally obtained values was minimal, i. e. that
the condition

F (a1, . . . , an) =
∑
i

(fi(a1, . . . , an)− yi)
2 → 0, (6)

was satisfied. In this formula variables yi represent
experimental measured data for i specter channel, fi
– calculated values of theoretical peak approximating
function, and a1, . . . , an – approximating function pa-
rameters (peak amplitude, peak center position, vari-
ance, widening, asymmetry and other).

Phrase ”conjugate gradient method”
has no deep meaning, because in most
cases the gradients are not conjugated,
and conjugated directions have nothing mutual with
gradients. Therefore, from a mathematical point of
view, it would be correct to call this method ”method
of conjugate directions and gradients”. Methods
name ”conjugate gradient method” reflects the fact
that this approach combines the concepts of the
gradient of the objective function and conjugate di-
rections. In science, the name stuck and is used quite
often.

To conjugate gradient method converges after a
small number of iterations, the function F (a1, . . . , an)
can be conveniently represented in the form of:

F (a1, . . . , an) =
1

2
Aã2 − bã, (7)

where ã represents the function parameters vec-
tor (a1, . . . , an) (unknown vector, to be determined

through optimization); A – some known, square, sym-
metric, positive definite matrix; b – some known vec-
tor. As is known, the function has an extreme at the
point where its gradient (or antigradient) is zero. In
the present case, it corresponds to

Aã− b = b−Aã = 0. (8)

In the case of finding the minimum of a function
in the calculations necessary to minimize its antigra-
dient, i. e. is necessary to make sure that ã defined
by the condition

b−Aã = 0. (9)

During the calculation process one suppose that
on the each iteration

rk = b−Aãk, (10)

where the k – iteration number, rk – minimizing func-
tion antigradient value on the iteration number k.
One also suppose that

ãk+1 = ãk + αkdk, (11)

where dk represents a direction associated with anti-
gradient by a certain correlation, αk – a corrective
coefficient recounting on each iteration. Parameters
dk and rk are bound by the correlation

dk+1 = rk+1 + βkdk, (12)

in which β is the linking coefficient which value cal-
culates on each iteration. Initially (before the calcu-
lation) d0 considers to be equal to r0.

Let’s now turn to the derivation of the expression
for the coefficients αk and βk. First, we write the
expression for rk and rk+1:

rk = b−Aãk,

rk+1 = b−Aãk+1, (13)

and subtract the rk form the rk+1. One gets that:

rk+1 − rk = b−Aãk+1 − b+Aãk =

= −A (ãk+1 − ãk) , (14)

hence
rk+1 = rk −A (ãk+1 − ãk) . (15)

By definition ãk+1 = ãk + αkdk, so, ãk+1 − ãk =
= αkdk. Substituting this expression in the formula
(15), one gets that:

rk+1 = rk − αkAdk. (16)

Multiplying this equality by rk on the left one
finds that:

s(rk, rk+1) = (rk, rk)− αk(rk, Adk). (17)

The value of rk+1 is chosen so that it is orthogo-
nal to rk. This means that (rk, rk+1) = 0. Hence one
obtains:

(rk, rk)− αk(rk, Adk) = 0. (18)
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Thereby one receives the expression for αk:

αk =
(rk, rk)

(rk, Adk)
. (19)

Replacing in expression (12) index k+1 to k, and
k – to k − 1, one gets: dk = rk + βk−1dk−1. Then
rk = dk − βk−1dk−1. Substituting rk in the denomi-
nator of expression (19) and taking into account the
fact that dk is orthogonal to dk−1 one gets that:

αk =
(rk, rk)

(dk, Adk)
. (20)

Let’s now get the expression for βk. By definition
dk+1 = rk+1 + βkdk. Multiplying this expression by
Adk, one finds:

(dk+1, Adk) = (rk+1, Adk) + βk(dk, Adk). (21)

The expression on the left side of this formula
which is equal to zero, because dk+1 is taken to be
orthogonal to dk. Hence one obtains:

βk = − (rk+1, Adk)

(dk, Adk)
. (22)

From the expression (16) follows:

Adk =
1

αk
(rk − rk+1) . (23)

Thus, the numerator in the formula (22) can be
written as

(rk+1, Adk) =
1
αk

(rk+1, (rk − rk+1)) =

= − 1
αk

(rk+1, rk+1), (24)

because rk+1 is chose to be orthogonal to rk. The
denominator of expression (22) can be rewritten like
this:

(dk, Adk) = ((rk + βk−1dk−1), Adk) =

= 1
αk

(rk, (rk − rk+1)) =
1
αk

(rk, rk). (25)

Therefore one can find the expression for βk:

βk =
(rk+1, rk+1)

(rk, rk)
. (26)

The resulting expression is called the formula of
Fletcher-Reeves [4]. In some cases, using this for-
mula, the method can not converge in a very large
number of iterations. Therefore, in practice most of-
ten used Polak-Ribiere formula. This formula can be
represented as follows [4]:

βk =
(rk+1, (rk+1 − rk))

(rk, rk)
. (27)

In this paper, the function F (ã) is equal to∑
i

(
F̃i(ã)

)2
=
∑
i

(fi(ã)− yi)
2
. The matrix element

of gradient of this function is

rj = 2
∑
i

F̃i(ã)
∂F̃i(ã)

∂aj
, (28)

where aj – vector ã element number j.

To find the matrix A one needs to get the second
derivative of the function F (ã), or the first derivative
of its gradient. From this we find the expression for
the matrix element Ajk [5]:

Ajk = 2
∑
i

(
∂F̃i(ã)

∂aj

∂F̃i(ã)

∂ak
+ F̃i(ã)

∂2F̃i(ã)

∂aj∂ak

)
.

(29)

4. RESULTS AND DISCUSSION

To test the program processing spectra measured
with detectors, model spectra were designed. They
contained two partially overlapping peaks described
ideal constant variance Gaussians. In mode which ap-
proximated resonances in the spectrum by the various
theoretically determinable Gaussians was performed
preliminary smoothing of the spectrum by six points,
so smooth spectrum differed from the original. Con-
sequently, the resonance in the model created spectra
a little differed from the ideal Gaussian. When calcu-
lating the area under the peak was used per-channel
summation of physical values described by approx-
imating function, which is then compared with the
sum of the per-channel measured or modeled physi-
cal values in smoothed spectrum.

Since the fitting results obtained by the conjugate
gradient method, depends on the initial setting val-
ues, the ability to set these settings manually (with
the keyboard) has been provided in the program. For
this purpose, the window was made by the program,
which was possible to set the text in the input fields
of the initial values of the functions parameters that
approximate resonance (Fig.1).

Fig.1. Start parameters setting window

After pressing the button ”Count” in the main
program window, the approximation of resonances in
the spectrum of Gaussian functions started. If the
result for any resonance had a rather large error, one
was possible to change the initial settings, causing the
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window shown in Fig.1, and set other initial values,
and then recalculate the spectrum or the single peak.

The results of the approximation of the spectrum
with two overlapping Gaussians model set shown in
Fig.2. Before the approximation of the parameters
set in accordance with Table. The error comput-
ing the area under the overlapping resonances in this
range was equal to 4.81 % as a result of the fact that
before the spectrum processing the spectrum smooth-
ing was carried out and the resonances processed by
program differs from the ideal Gaussians with a fixed
variance.

Fig.2. Overlapped peaks processing result

Start parameters values for overlapped peaks
counting

N Amplitude Center Variance
1 97.8 50 6
2 53.6 68 6

Also approximation was carried out by two types
of two Gaussians model set of non-overlapping peaks.
When approximating peaks by the usual Gaussian
variance start value was set equal to 6, and in the
case of approximation Gaussian with variable vari-
ance its start parameters were set as follows: for the
first peak values of the parameters were as follows:
C = 95; D = 0.01; E = 10; F = 10, and for the sec-
ond - as follows: C = 96; D = 0.01; E = 10; F = 10.
The results differ very little, and general appearance
of the picture for them is shown in Fig. 3. In the ap-
proximation of these peaks by usual Gaussian errors
are equal to 4.49 and 3.33 % for the first and second
peaks, respectively. In the case of a Gaussian with
variable variance approximation of the same peaks
error are equal to 1.47 % for the first peak and 2.66%
for the second one. In the case where these same

peaks were approximated by sectionally defined func-
tion, errors are equal to 5.63 % for the first peak and
3.98 % for the second one.

Fig.3. Single peaks processing result

5. CONCLUSIONS

The results of calculations carried out with the
help of the developed program, show that the ap-
proximation of the Gaussian peaks with variable dis-
persion gives a more exact result than the approxima-
tion by the usual Gaussian. The result of sectionally
defined function approximation to the peaks is less
accurate than using conventional Gaussian.

We are very indebted to V.M. Mishchenko and
Yu.V. Lyashko for valuable discussions.
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ÌÎÄÅËÜ Ñ ÏÅÐÅÌÅÍÍÎÉ ÄÈÑÏÅÐÑÈÅÉ ÄËß ÀÍÀËÈÇÀ γ-ÑÏÅÊÒÐÎÂ

À.Þ. Áåðåæíîé, Ñ.Í. Óòåíêîâ

Ðàçðàáîòàíà ïðîãðàììà îáðàáîòêè ñïåêòðîâ ¾GAMMAPEAKS¿, àïïðîêñèìèðóþùàÿ ïèêè â γ-ñïåêòðàõ
ïðîñòûì ãàóññèàíîì, ãàóññèàíîì ñ ïåðåìåííîé äèñïåðñèåé è êóñî÷íî-çàäàííîé ôóíêöèåé, â êîòîðîé

öåíòð ïèêà îïèñûâàåòñÿ îáû÷íûì ãàóññèàíîì, à êðàÿ � â ôîðìå ýêñïîíåíò. Äëÿ àïïðîêñèìàöèè èñ-

ïîëüçîâàëñÿ ìåòîä ñîïðÿæëííûõ ãðàäèåíòîâ, ñ ïîìîùüþ êîòîðîãî ìèíèìèçèðîâàëàñü ñóììà êâàäðàòîâ

îòêëîíåíèé çíà÷åíèé àïïðîêñèìèðóþùåé ôóíêöèè îò çíà÷åíèé â êàíàëàõ ñïåêòðà, ïðèíàäëåæàùèõ

ïèêó. Ðàçðàáîòàííûé àëãîðèòì ïîçâîëÿåò ñ äîñòàòî÷íîé òî÷íîñòüþ îïðåäåëèòü ïëîùàäü ïîä ïèêîì â

ñïåêòðå, íåîáõîäèìóþ äëÿ îïðåäåëåíèÿ äèôôåðåíöèàëüíîãî ñå÷åíèÿ ðàññåÿíèÿ.

ÌÎÄÅËÜ IÇ ÇÌIÍÍÎÞ ÄÈÑÏÅÐÑI�Þ ÄËß ÀÍÀËIÇÓ γ-ÑÏÅÊÒÐIÂ

À.Þ. Áåðåæíèé, Ñ.Ì. Óò¹íêîâ

Ðîçðîáëåíî ïðîãðàìó îáðîáêè ñïåêòðiâ ¾GAMMAPEAKS¿, ùî àïðîêñèìó¹ ïiêè â γ-ñïåêòðàõ çà äîïî-

ìîãîþ ïðîñòîãî ãàóññiàíó, ãàóññiàíó iç çìiííîþ äèñïåðñi¹þ òà êóñî÷íî-çàäàíî¨ ôóíêöi¨, ó ÿêié öåíòð

ïiêó îïèñó¹òüñÿ çâè÷àéíèì ãàóññiàíîì, à áîêè � åêñïîíåíòàìè. Äëÿ àïðîêñiìàöi¨ çàñòîñîâóâàâñÿ ìåòîä

ñïðÿæåíèõ ãðàäi¹íòiâ, íà îñíîâi ÿêîãî ìiíiìiçóâàëàñÿ ñóìà êâàäðàòiâ âiäõèëåíü çíà÷åíü àïðîêñèìóþ÷î¨

ôóíêöi¨ âiä âåëè÷èí ó êàíàëàõ ñïåêòðà, ùî íàëåæàòü ïiêó. Ðîçðîáëåíèé àëãîðèòì äà¹ çìîãó âèçíà÷èòè

ç äîñòàòíüîþ òî÷íiñòþ ïëîùèíó ïiä ïiêîì ó ñïåêòði, ÿêà ïîòðiáíà äëÿ âèçíà÷åííÿ äèôåðåíöiàëüíîãî

ïåðåðiçó ðîçñiÿííÿ.
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