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The time variation of the field strength of the radiation caused by the charged particle transition through the plasma-

vacuum boundary is obtained for the wave zone. It is shown that in the nearly collisionless plasma, together with the

dumped oscillations at the beginning stage of pulse decay and the monotonous strength decrease by the power law

with the exponent −3/2 at the final stage, there exists the time range with decrease as power with the exponent −5/3,

corresponding to anomalous skin effect. The conditions are considered, for which the experimental measurements of

the obtained pulse characteristics is possible.

PACS: 41.60.-m

1. INTRODUCTION

The transition radiation arises when a particle crosses
the boundary between two media [1]. It is used in the
different devices. For the case of the particle transi-
tion from plasma to vacuum or vice versa, the pa-
per [2] contains the detailed study of the influence of
plasma parameters on the radiation characteristics.
In the papers devoted to investigation of transition
radiation the attention was mainly given to its spec-
tral characteristics. Recently, the attention to the
space-time evolution of the radiation field has grown
[3]. With the aim of more precise interpretation of
the nuclear physics experiments, in the paper [4],
the characteristics of space-time evolution are studied
not only in the wave zone, but in the pre-wave zone,
where the radiation is formed, too. With the aim
to create the generators of transition radiation, the
characteristics of the radiation generated by the mod-
ulated beams are obtained [5], and the experimental
investigations of the wide-range transition radiation
generated with use of the pulsed accelerators of direct
action are carried out [6]. The transition radiation as
an elementary mechanism is the base of operation of
some other devices, in particular, of monotron [7].

In the present work, it is considered the time de-
pendence of the electric field strength in the wave
zone. A pulse may be presented in the form of inte-
gral Fourier with real frequencies. Skin effect takes
place at sufficiently low frequencies, where the abso-
lute values of the radiated pulse amplitudes are al-
most the same for the different frequencies, whereas
skin effect type depends on the ratio of the colli-
sion and plasma frequencies and on the characteristic
plasma electron velocity value. So, in the frequency
domain, the characteristics of transition radiation are
almost the same for any skin effect type (if skin effect

takes place). But in the time domain, there are the
stages of the pulse decay characterized by the differ-
ent rates, which correspond to anomalous and nor-
mal skin effect. In the following sections, the prob-
lem for the radiation caused by a particle transition
through the plasma-vacuum boundary is formulated
and reduced to the form convenient for solution con-
struction, the approximate equalities for the different
stages of the strength time evolution are obtained,
and the possibility of experimental measurement of
the considered pulse characteristics is discussed.

2. EQUATIONS FOR FIELD
COMPONENTS IN PLASMA

Let a particle with charge Z0e0 moves along OZ
axis with velocity β0ce⃗z, where e⃗z is unit vector of
OZ axis, c is the speed of light, e0 is elementary
charge, β0 ∈ (−1, 1), β0 ̸= 0, the particle is relativis-
tic, but not ultrarelativistic, β0 ∼ 1− β0, the half-
space z < 0 is empty, and the half-space z > 0 is filled
with plasma. In plasma, Maxwell equations may be
written in the form

rotE⃗ + c−1(∂/∂t)H⃗ = 0,

rotH⃗ − c−1(∂/∂t)E⃗ − 4πc−1(⃗j + j⃗0) = 0,
(1)

where j⃗0 = Z0e0δ(x)δ(y)δ(z − β0ct)β0ce⃗z,
j⃗ = e0

∫
d3v⃗v⃗f1, the perturbation, f1 = f1(v⃗, r⃗, t),

of electron distribution function obeys the equality

(∂/∂t)f1 + v⃗(∂/∂r⃗)f1+

+(e0/m)E⃗(∂/∂v⃗)f0 + νf1 = 0,

m is electron mass, ν is collision frequency, the
plasma electron motion is assumed nonrelativistic,
the unperturbed electron distribution function f0 is
assumed isotropic, f0 = nef̄0(|v⃗|/ve)/v3e , ne is the
unperturbed electron density, ve is characteristic
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velocity of plasma electrons, ve≪c, v is the veloc-
ity normalized with respect to ve, and the func-
tion f̄0(v) obeys the condition 4π

∫∞
0

dvv2f̄0(v) = 1.
In the case of Maxwell distribution (MD), there is
f̄0(v) = exp(−v2)/π3/2 for all positive v. In the case
of Fermi distribution with zero temperature (FD),
there is f̄0(v) = 3/(4π) at v ∈ (0, 1) and f̄0(v) = 0
at v > 1. Electron flow from the boundary into the
plasma is characterized by the part, p ∈ (0, 1), of
electrons scattered from the boundary specularly
(the rest is scattered diffusely), and the boundary
condition f(vz) = pf(−vz) is held, for vz > 0 at
z = 0. To the time-dependent components of the
field strength the Fourier transformation is applied
with the factor exp[ı̇ωc−1(ct− kxx− kyy − kzz)] and
with integration over the intervals t ∈ (−∞,+∞),
x, y ∈ (−∞,+∞), z ∈ (0,+∞). The values of ω,
kx, and ky are real. It may be put ky = 0 (due to
possibility of relevant revolution of XOY-plane).

Using the letter u instead of kz in the arguments
of some functions, let us introduce the functions

S̄0(ϑ, η) = −2π
∫∞
0

dv×
×v3(1− ηv cosϑ)−1(d/dv)f̄0(v),

qλ(η) =
∫ π

0
dϑsinϑcos2ϑS̄0(ϑ, η),

qτ (η) =
∫ π

0
dϑsin3ϑS̄0(ϑ, η)/2,

η̃(u) = β(u2 + k2x)
1/2,

Qλ(u) = 1− Ω2qλ(η̃(u)),
Qτ (u) = 1− k2x − u2 − Ω2qτ (η̃(u)),

Ψλ(u) = ωc−1[kxEx(u) + uEz(u)],
Ψτ (u) = ωc−1[kxEz(u)− uEx(u)],

Φλ(u) = uIz(u)+
+Qλ(u)[Ψλ(u) + pΨλ(−u)],

(2)

Φτ (u) = kxIz(u)+
+Qτ (u)[Ψτ (u)− pΨτ (−u)].

(3)

Here Iz(u) = Iz0/(u− kz0), Iz0 = Iz1/ω, kz0 = β−1
0 ,

Iz1 = 4πsign(β0)Z0e0, Ω = ωe[ω(ω + ı̇ν)]−1/2,
β = βeω(ω + ı̇ν)−1, ωe = (4πe20ne/m)1/2, βe = ve/c.
The functions Ψλ(u) and Ψτ (u) (and the functions
Ex(u) and Ez(u)) should be analytical in the half-
plane Im(u) < 0 and in the point u = −kz0. The
functions Φλ(u) and Φτ (u) correspond to some linear
combinations of the left hand sides of (1), and they
should be analytical in the half-plane Im(u) > 0 and
in the point u = kz0, in connection with validity of
the equations in the half-space z > 0. The functions
Ψλ(u) and Ψτ (u) should be bounded in the half-plane
Im(u) < 0, and also, the equalities

Ψ(±ı̇kx) = 0 (4)

for the function Ψ(u) = kxΨλ(u)− uΨτ (u) should be
held. The introduced functions qλ,τ (η) are even,
qλ,τ (−η) = qλ,τ (η), they are analytical in the half-
planes Im(η) > 0 and Im(η) < 0 of the complex
plane η, they are bounded and continuous on the
whole imaginary axis Re(η) = 0, and the equali-
ties qλ,τ (0) = 1 take place. In the case of FD,
the functions qλ,τ (η) also are analytical on the in-
terval (−1, 1) of real axis. Let γ0 is minimum
of such values that f̄0(v) = 0 for all v > 1/γ0 (so
that γ0 = 1 for FD, γ0 = 0 for MD), and let Γ0 is
the interval (γ0,+∞). For η ∈ Γ0, denoting with
∆λ,τ (η) the difference of relevant function values at
the different sides of the cut carried out along Γ0,
∆λ,τ (η) = qλ,τ (η − ı̇0)− qλ,τ (η + ı̇0), one gets

∆λ(η) = −4π2 ı̇η−3f̄0(1/η),
∆τ (η) = −4π2 ı̇η−1

∫∞
1/η

dvvf̄0(v).

In particular,

∆λ(η) = −3πı̇η−3,
∆τ (η) = 3πı̇(η−3 − η−1)/2,

for η > 1, in the case of FD, and

∆λ(η) = −4ı̇π1/2η−3 exp(−η−2),
∆τ (η) = −2ı̇π1/2η−1 exp(−η−2),

in the case of MD. The functions Qλ,τ (u) have the
branching points ±b, where b = [(γ0/β)

2 − k2x]
1/2,

Im(b) > 0. If the cut G in the half-plane Im(u) > 0
from the point b to infinity is made then analytical
extension of the functions Qλ,τ (u) with the different
path-tracing around the point b gives the different
values of the functions, so that

Qλ,τ (u(1− ı̇0))−Qλ,τ (u(1 + ı̇0)) =
= −Ω2∆λ,τ (η̃(u)).

At z → 0+, for the boundary values of relevant field
components, Ẽz(z), Ẽx(z), and H̃y(z), which are the
functions of z obtained with integration of the time
dependent components only with respect to t, x and
y, with the factor exp[ı̇ωc−1(ct− kxx− kyy)], one
has the equalities

Ẽz(0+) = ı̇Ψλ(∞),

Ẽx(0) = −ı̇Ψτ (∞), H̃y(0) = −ı̇Ψ ′
τ , (5)

where Ψ ′
τ = limu→∞{u[Ψτ (u)−Ψτ (∞)]}. The val-

ues of Ẽz(0+) and Ẽz(0−) for p̸=1 may be different,
in connection with existence of infinitely thin charge
layer varying with time at the sharp plasma boundary
[8]. The waves with kx > 1 are not emitted into the
free half-space z < 0, as they decreases there expo-
nentially with z → −∞, so, only the case kx ∈ (0, 1)
is considered.
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3. REDUCING OF THE PROBLEM TO
INTEGRAL EQUATIONS

With the method similar to one used in [9], [10],
and [11] for the problem of wave incidence on the
plasma medium, each of the equalities, (2) or (3), to-
gether with the requirements of analyticity, is reduced
to Riemann-Hilbert boundary problem for the pair
of functions, {Φλ,τ (u), Ψλ,τ (−u)} and {Φλ,τ (−u),
Ψλ,τ (u)}, analytical in the different half-planes. And
this problem is solved with reducing to integral equa-
tions.

Let us introduce the functions

S±
λ,τ (±u) = ±(2πı̇)−1×

×
∫
L
dw(w∓u)−1qλ,τ (η̃(w))Ψλ,τ (−w),

where L is a straight line on the complex plane,
passing through the point 0 from left to right, lower
the points u, b, and kz0. Moving the path-tracing to
the cut G, one can obtain the equality

S−
λ,τ (u) = (2π)−1 ı̇×

×
∫
G
dw(w − u)−1∆λ,τ (η̃(w))Ψλ,τ (−w),

(6)

for any u ̸∈ G. For the analytical extensions of the
functions of u on the line L one gets the equalities

S+
λ,τ (u) + S−

λ,τ (u) = qλ,τ (η̃(u))Ψλ,τ (−u),

Φλ(u) + (1− p)Ψλ(−u)− uIz(−u)+
+(1− p)Ω2[S−

λ (−u)− S+
λ (u)] =

= u[Iz(u)− Iz(−u)]+
+Qλ(u)[Ψλ(u) + Ψλ(−u)]+

+(1− p)Ω2[S−
λ (u) + S−

λ (−u)],

(7)

Φτ (u)− (1− p)(1− k2x − u2)Ψτ (−u)+
+(1− p)Ω2[S+

τ (u) + S−
τ (−u)]− kxIz(−u) =

= kx[Iz(u)− Iz(−u)]+
+Qτ (u)[Ψτ (u)−Ψτ (−u)]+

+(1− p)Ω2[S−
τ (−u)− S−

τ (u)].

(8)

The left hand sides of (7) and (8) are analytical
upper of L, the right hand side of (7) is even by u,
and one of (8) is odd by u. So, both sides of both
equations should be analytical on the whole complex
plane of the variable u, and they should be equal to
the analytical functions determined with asymptotic
at u → ∞. As a result, one comes to the equalities

Qλ(u)[Ψλ(u) + Ψλ(−u)]+
+(1− p)Ω2[S−

λ (u) + S−
λ (−u)]+

+u[Iz(u)− Iz(−u)] = 2Iz0 + 2Ψλ(∞).
(9)

Qτ (u)[Ψτ (u)−Ψτ (−u)]+
+(1− p)Ω2[S−

τ (−u)− S−
τ (u)]+

+kx[Iz(u)− Iz(−u)] = −2uΨ ′
τ .

(10)

The next steps consist of dividing of both sides of (9)

on Qλ(u) and ones of (10) on Qτ (u), and splitting
of each term on the sum of the functions analytical
in one of half-planes, upper or lower of L, according
to the following example: F (u) = F+(u) + F−(u),
where

F±(±u) = ±(2πı̇)−1
∫
L
dv(v∓u)−1F (v), (11)

for u upper the line L. The terms analytical in the
different half-planes, upper and lower of L, should
be transposed to the different sides of the equali-
ties, so that both sides of the obtained equalities
should be equal to zero, as they are analytical on the
whole complex plane and their terms come to zero
at u → ∞. For u upper the line L, introducing the
functions

V +
λ (u) =

∫
L
dv[πı̇(v − u)]−1{[Qλ(v)]

−1 − 1},

V +
τ (u) =

∫
L
dv[πı̇(v − u)Qτ (v)]

−1,

Vλ(u,w) = (w2 − u2)−1×
×[wV +

λ (u)− uV +
λ (w) + w − u],

Vτ (u,w) = (w2 − u2)−1×
×[uV +

τ (u)− wV +
τ (w)],

K ′
λ,τ (u,w) = (2π)−1 ı̇Ω2∆λ,τ (η̃(w))Vλ,τ (u,w),

one comes to the equations

Ψλ(−u) + (1− p)
∫
G
dwK ′

λ(u,w)Ψλ(−w) =
= [1 + V +

λ (u)]Ψλ(∞) + Iz0kz0Vλ(u, kz0),
(12)

Ψτ (−u) + (1− p)
∫
G
dwK ′

τ (u,w)Ψτ (−w) =
= −Iz0kxVτ (u, kz0)+

+Ψτ (∞) + [uV +
τ (u)− V ′

τ ]Ψ
′
τ ,

(13)

where V ′
τ = limu→∞[uV +

τ (u)]. In deducing of the
equations, it is applied the change of the integration
order, with respect to w in (6) and with respect to v
in the integral of the type (11) used in the splitting
of each equation term on the sum of the functions
analytical in the different half-planes. The solving of
integral equations gives the functions Ψλ,τ (−u) for
the given Ψλ(∞), Ψτ (∞), and Ψ ′

τ . To find the last
three quantities, there are three equations: two equa-
tions correspond to the conditions (4), and the third
one may be obtained from the field consideration in
the half-space z < 0, free of plasma, with account
of the continuity of the functions Ẽx(z) and H̃y(z)
at z = 0. With account of (5), the equation may be
written in the form

Ψτ (∞) + wzΨ
′
τ = kx(kz0 − wz)

−1Iz0, (14)

where wz = (1− k2x)
1/2. Also, the field consid-

eration in the half-space z < 0 gives the equal-
ity Ẽ r

z (0−) = ı̇kxΨ
′
τ − ı̇k2x(k

2
z0 − w2

z)
−1Iz0, for the

boundary value of relevant field component of the
wave radiated there from the boundary.
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4. TIME EVOLUTION OF RADIATION
FIELD STRENGTH

For the time dependence of the electric field strength
in the wave zone, taking into account an axial symme-
try of the problem and carrying out the integration
with respect to transverse wave number with use of
the saddle-point method, one can get the expression

Eθ≈(4π2c)−1r−1
∫ +∞
−∞ dωE′(ω) exp(−ı̇ωtr), (15)

where r is the distance from the origin, θ is the
angle between the vector r⃗ and the negative part of
OZ axis, tr = t− r/c, E′(ω) = ı̇ω cot θẼ r

z (0−) (with

Ẽ r
z (0−) dependent on ω), and in all used relation-

ships it should be taken sin θ for kx. The quantity tr
is the time counted from the instant of the transition
radiation signal arriving to the given point at the
distance r from the origin. The trends of the field
time variation are connected with the singularities of
the function E′(ω) on the complex plane of ω.

It is worthy to point out that an attempt to use
the frequency with the positive imaginary part at the
stage of the problem formulation (as it may be done in
the problem for the field given at initial time instant)
leads to divergence of some integrals at t→−∞,
in the problem considered here. But at the stage
of solving of the problems, having been formulated
for the frequencies, one can move ω from the semi-
axes ω > 0 and ω < 0 to the half-plane Im(ω) > 0
or Im(ω) < 0. For any time-dependent real quantity

f̃(t), which may be subjected to Fourier transforma-

tion, the transforms, f(ω) =
∫∞
−∞ dteı̇ωtf̃(t), obeys

the equality f(ω) = f∗(−ω∗) (where
∗
indicates com-

plex conjugate). If the transformation may be car-
ried out with real frequencies then the inverse trans-
formation, f̃(t) = (2π)−1

∫∞
−∞ dωe−ı̇ωtf(ω), gives the

equality

(d/dt)nf̃(t) = π−1Re
∫∞
0

dωe−ı̇ωt(ω/ı̇)nf(ω), (16)

for n≥0, if the integral converges. If the analyti-
cal extension from the real axis of ω to any (positive
or negative) part of imaginary axis gives purely real
values of f(ω) then in some part of relevant half-plane
(Im(ω) > 0 or Im(ω) < 0) symmetric with respect to
the imaginary axis the analytical extensions from the
semi-axes ω > 0 and ω < 0 give the same analytical
function, and then, in connection with integrability
of the possible singularities on real axis, the path-
tracing may be changed from (−∞,+∞) to one,
partially disposed in the relevant half-plane.

For tr < 0, the time dependencies are connected
with the singularities of integrands in the half-plane
Im(ω) > 0. If such singularities were present there,
the growth of perturbations would take place, which
is impossible in the equilibrium plasma state. And
the solution of the equations (4), (12), (13), and (14)
in the case {Re(ω) = 0, Im(ω) > 0} gives purely real

value of integrand in (15). So, at tr < 0 there is no
radiation field in the given point in the wave zone.

For tr > 0, the path-tracing in (15) may be moved
to the half-plane Im(ω) < 0, where the singularities
are present. The jump of the quantity (16) at tr = 0
is given with relevant integral over infinitely remote
semicircle (instead of the semi-axis (0,∞)). In the
case {ω ≫ ωe, ω ≫ ν, Ω2 ≪ βe ≪ 1} the kernels in
integral equations (12) and (13) are small, and the
approximate solutions of the equations may be ob-
tained with the substitution of free summands into
integrals, instead of unknown functions. In such a
way, one can obtain E′(ω)≈E′

2ω
−2, where

E′
2 = Iz1 sin θω

2
e [2(1− β2

0cos
2θ)]−1×

×
{
β0 − β3

0(1 + β0 cos θ)
−1 − βev̄ ×

× [(1− p)β0 cos θ + 2(1 + p)(1− β2
0)]/4

}
,

v̄ = 4π
∫∞
0

dvv3f̄0(v) (v̄ = 3/4 for FD, v̄ = 2/π1/2

for MD). As a result, the strength Eθ at tr = 0 varies
continuously, and its time derivative has the jump,
which is approximately equal to (−2πc)−1r−1E′

2.
As plasma is nonrelativistic, βe≪1, then, neglect-

ing the terms, which are small together with βe, one
can obtain the approximate equality

E′(ω)≈Iz1 sin θ cos θβ0Ω
2(1− β2

0 + β0kze)×
×[(kze cos θ + sin2θ)(kze + cos θ)]−1×

×[(1− β2
0cos

2θ)(1 + β0kze)]
−1,

(17)

where kze = (cos2θ − Ω2)1/2. Using (17), one can
estimate the time variation of the field strength at
the beginning stage of the pulse dumping. If the
collision frequency is low, ν≪ωe, and if θ is not very
close to 0 or π/2, then, after relevant moving of path-
tracing, the integral in (15) may be estimated by the
contribution of the vicinity of the branching point at
ω≈ωe/cos θ, near which the value of kze is small. For
ω−1
e ≪ tr ≪ ν−1, the estimation gives

Eθ≈(2πc)−1r−1Iz1ωeβ0cos
2θ×

×(1− β0 cos θ − β2
0sin

2θ)×
×[sin3θ(1− β0 cos θ)]

−1×
×{2π−1cos θ(ωetr)

−3}1/2×
× cos[(ωe/cos θ)tr − (π/4)].

(18)

At tr ≫ ν−1 the contribution of the mentioned
branching point to the field strength value should be
modified with the factor exp(−νtr/2), which makes
this contribution relatively small. For the strength
value ⟨Eθ⟩ obtained from (18) with averaging by the
cycle of oscillation one can get the estimation

|⟨Eθ⟩|∼(2πc)−1r−1Iz1ωe(ωetr)
−5/2. (19)

At tr → ∞ the strength is determined by the con-
tribution of the branching point ω = 0. For {ω ≪ ν,
ω ≪ ωe}, and any ν/ωe, from (17) one can get

E′(ω)≈− Iz1 sin θβ0{(1− β2
0cos

2θ)−1+
+kze[Ω

2 cos θ(1− β0 cos θ)]
−1},
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and estimation of the integral over the path-tracing
near ω = 0 for {tr ≫ ω−1

e , tr ≫ ν−1} gives

Eθ≈− (2πc)−1r−1Iz1β0sin θ×
×[2cos θ(1− β0 cos θ)]

−1×
×{π−1νωe(ωetr)

−3}1/2.
(20)

But if there exists the frequency range, corre-
sponding to the anomalous skin effect conditions, in
which ν ≪ ω ≪ βeωe (with βe≪1), then in this range
the relationship

E′(ω)≈− Iz1sin θβ0(1− β0 cos θ)
−1×

×[(1 + β0 cos θ)
−1+

+exp(2ı̇π/3)Z̄βe(A cos θ)−1]
(21)

takes place, in which A = (βΩ)2/3,

Z̄ = (48/π2)1/6[sin(αp/3)/ sin(αp/2)]
2, (22)

αp = arccos(p). And the estimation of relevant inte-
gral for (βeωe)

−1 ≪ tr ≪ ν−1 gives

Eθ≈− (2πc)−1r−1Iz1β0sin θ×
×31/2Γ(5/3)Z̄[2π cos θ(1− β0 cos θ)]

−1×
×ωeβ

1/3
e (ωetr)

−5/3,

(23)

where Γ is Euler function. The relationship (21) may
be obtained in impedance approximation [2] with use
of normalized impedance Z̄ value (22) found in [12]
for any p value. Somewhat more detailed considera-
tion of the problem for the anomalous skin effect con-
ditions is presented in [13]. At (βeωe)

−1 ≪ tr ≪ ν−1

the value of Eθ given by (23) is much greater than
the value of Eθ given by (20) and the value of ⟨Eθ⟩
given by (19).

A possibility of experimental measurement of time
evolution of the transition radiation pulse is restricted
by quantum effects. The expression for the radiated
energy [14] contains the dimensional factor, e20ωec

−1,
which may be written in the form αh̄ωe, where
α = e20(h̄c)

−1 ≈ 1/137. And the probability of pres-
ence of photon with the frequency of order of plasma
one in the transition radiation formed by a single ele-
mentary charge crossing a plasma boundary is small.
But if the boundary is crossed with compact bunch
of particles, which number is much greater than 1/α,
then the electric field strength evolution may be de-
scribed in the frames of classic electrodynamics.

Considering a generation of transition radiation
by the bunches obtained on the pulsed accelerator,
it is worthy to estimate the parameters of the bunch
and plasma medium, for which the generation may
be energetically efficient. An increase of particle
number in the bunch leads to increase of the ra-
tio of the radiated energy to the bunch kinetic en-
ergy. When the particle number is small the ratio is
approximately proportional to it. The ratio is con-
nected with the efficiency of generation of transition
radiation, and it is saturated when the removing of

the bunch from plasma is accompanied with con-
siderable decrease of the bunch kinetic energy, and
the part of the energy may be spent on radiation.
To obtain the radiated energy value of the order of
the kinetic energy value of the relativistic electron
bunch, transiting from plasma to vacuum, for the
given bunch dimension D and the particle number N ,
it is necessary to increase N up to the value, at which
N2e20/D∼Nmc2, so, D∼Nre, where re is classic elec-
tron radius, re = e20/(mc2)≈2.8·10−13cm. The main
part of the energy is radiated at the frequency of the
order of plasma one (assuming that bunch is not ul-
trarelativistic), and for its effective generation the re-
lationship D ∼ c/ωe should be held, and so, it should

be N ∼ ωe0/ωe, where ωe0 = c/re≈1.06·1023s−1
. The

charge of bunch is equal to Ne0. When the bunch
goes out of plasma the peak current is of order
of Alfven current, IA = e0ωe0≈1.7·104A. For ex-
ample, the effective generation of wide-band sig-
nal with characteristic frequency 1 GHz, may be
achieved for the following parameters: plasma fre-
quency ωe∼6·109s−1

, plasma density ne∼1010cm
−3

,
bunch dimension D∼5 cm, particle number in the
bunch N∼2·1013, charge of the bunch Ne0∼3·10−6C,
particle density in the bunch ND−3∼2·1011cm−3

.

5. CONCLUSIONS

It is considered the time variation of the field strength
of the radiation caused by the charged particle tran-
sition through the plasma-vacuum boundary, with
plasma consideration in the kinetic approximation.
Before the signal about crossing the boundary by the
particle comes to the given point in the wave zone, the
radiation field is absent. The signal coming is accom-
panied with the jump of the strength time derivative.
Then there take place the oscillations of the strength
with amplitude decreasing with time by the power
law with the exponent −3/2. At the final stage there
takes place the monotonous strength decrease as the
power with exponent −3/2. If the collision frequency
in plasma is much less than plasma one then there
exists the time range, in which, together with the
dumped oscillations, the monotonous decay by the
power law with the exponent −5/3 is present. It is
the realization of anomalous skin effect in the cor-
responding frequency range. The possibility of ex-
perimental measurement of the obtained pulse char-
acteristics is restricted with quantum effects, and it
can be achieved with the sufficiently large particle
number in the compact bunch going out of plasma
medium. The parameters of the electron bunch and
plasma medium required for effective generation of
transition radiation in the given frequency range are
determined by the conditions that the bunch dimen-
sion should be of order of the reciprocal wave number
and the potential energy of electrostatic interaction
of the bunch should be of order of the bunch kinetic
energy.
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ÂËÈßÍÈÅ ÑÊÈÍ-ÝÔÔÅÊÒÀ ÍÀ ÝÂÎËÞÖÈÞ ÈÌÏÓËÜÑÀ ÏÅÐÅÕÎÄÍÎÃÎ

ÈÇËÓ×ÅÍÈß ÑÎ ÂÐÅÌÅÍÅÌ

Â.Îñòðîóøêî

Èçìåíåíèå ñî âðåìåíåì íàïðÿæëííîñòè ïîëÿ èçëó÷åíèÿ, âûçâàííîãî ïåðåõîäîì çàðÿæåííîé ÷àñòèöû

÷åðåç ãðàíèöó ïëàçìà-âàêóóì, ïîëó÷åíî äëÿ âîëíîâîé çîíû. Ïîêàçàíî, ÷òî â ïî÷òè áåññòîëêíîâèòåëü-

íîé ïëàçìå, íàðÿäó ñ çàòóõàþùèìè êîëåáàíèÿìè íà íà÷àëüíîé ñòàäèè çàòóõàíèÿ èìïóëüñà è ìîíîòîí-

íûì óìåíüøåíèåì íàïðÿæëííîñòè ïî ñòåïåííîìó çàêîíó ñ ïîêàçàòåëåì −3/2 íà êîíå÷íîé ñòàäèè,

ñóùåñòâóåò äèàïàçîí âðåìåíè ñî ñòåïåííûì óìåíüøåíèåì ñ ïîêàçàòåëåì −5/3, ñîîòâåòñòâóþùèì àíî-

ìàëüíîìó ñêèí-ýôôåêòó. Ðàññìàòðèâàþòñÿ óñëîâèÿ, ïðè êîòîðûõ âîçìîæíî ýêñïåðèìåíòàëüíîå èçìåðå-

íèå ïîëó÷åííûõ õàðàêòåðèñòèê èìïóëüñà.

ÂÏËÈÂ ÑÊIÍ-ÅÔÅÊÒÓ ÍÀ ÅÂÎËÞÖIÞ IÌÏÓËÜÑÓ ÏÅÐÅÕIÄÍÎÃÎ

ÂÈÏÐÎÌIÍÞÂÀÍÍß Ç ×ÀÑÎÌ

Â.Îñòðîóøêî

Çìiíó ç ÷àñîì íàïðóæåíîñòi ïîëÿ âèïðîìiíþâàííÿ, âèêëèêàíîãî ïåðåõîäîì çàðÿäæåíî¨ ÷àñòèíêè ÷å-

ðåç ìåæó ïëàçìà-âàêóóì, îòðèìàíî äëÿ õâèëåâî¨ çîíè. Ïîêàçàíî, ùî ó ìàéæå áåççiòêíåííié ïëàçìi,

ïîðÿä çi ñïàäíèìè êîëèâàííÿìè íà ïî÷àòêîâié ñòàäi¨ çàãàñàííÿ iìïóëüñó òà ìîíîòîííèì çìåíøåííÿì

íàïðóæåíîñòi çà ñòåïåíåâèì çàêîíîì ç ïîêàçíèêîì −3/2 íà êiíöåâié ñòàäi¨, iñíó¹ äiàïàçîí ÷àñó çi ñòåïå-

íåâèì çìåíøåííÿì ç ïîêàçíèêîì −5/3, âiäïîâiäíèì àíîìàëüíîìó ñêií-åôåêòó. Ðîçãëÿäàþòüñÿ óìîâè,

çà ÿêèõ ìîæëèâå åêñïåðèìåíòàëüíå âèìiðþâàííÿ îòðèìàíèõ õàðàêòåðèñòèê iìïóëüñó.
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