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By means of nabla operator written down with using both of some differential operators with integer orders and
fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the
fulfillment of vector relations in fractional vector analysis, fractional Green’s, Stocks’ and Ostrogradsky-Gauss’
formulas. For a specific expression of nabla operator (nabla components along x and y axes have a unit order and
along z axis, correspondingly, a fractional value in the interval from zero till unit) Maxwell’s fractional equations
are written down. Based on the following from them some fractional wave equations, dissipative and polarization
processes at electromagnetic waves distribution both in rectangular (planar) and in cylindrical waveguide structures

are analyzed.
PACS: 02.30.Jr; 41.20.Jb; 42.82.Et; 84.40.Az

INTRODUCTION

Some physical investigations last time often use the
methods of fractional integro-differentiation (see, for
example, [1]). Particularly, in periodic press there are
various electrodynamics problems. For example, in [2]
some polarization properties of fractional electric and
magnetic fields are considered, in [3] microwaves
distribution in rectangular waveguides is investigated,
in [4] by means of a fractional wave equation it is made
a theoretical and experimental prove of the fractality of
the propagation of electromagnetic radiation in
absorbing media.

Evidently, these problems (and many others) have to
assume the existence of fractional Maxwell’s equations
which were introduced by Tarasov V.E. (see, for
example, [5]). They may be written down in

parallelepiped W :=(a<x<b,c<y<d,g<z<h) in
the following way:

B, oH (r't =

rotgs E(r.t)=£ "9 avgern=o g
. OE(F t a

rotgy H (,t) === (a: ) dv H(rt)=0, (1)

where the orders ay (k =1,2,3,4) may be both integer
and fractional, &,p — are correspondingly dielectric and

magnetic permeability. Besides, divy and roty

operators are determined in a general way but with the
help of the following nabla operator [5]:

Viy =6 5Dy +6,SDY +6, $DY, (n-1<a<n), (2)
where a,c,ng,y,z_ is left-side operators of Caputo’s

fractional derivatives which action on real-value
function of f (x, Y, z) is written down, for example, by
the value x in the following way [6, 7]:
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1 J-x £(n) (t,y,z)dt

Cha
Dy f(xYy,2)=
amx (X y Z) F(n—Ot) a (x—t)(HLn

®)

Note that functions f(x, y,z) should have continuous
derivatives up to (n—1) order and (n—1) derivatives

should be absolutely continuous, ie.
f(xy.z)e AC"[W] [1, 5].
The given paper shows that the further

generalization of Maxwell equations on the basis of
nabla operator proposed in [8] of so-called mixed orders
can be carry out and the direct consideration of which
follows.

1. NABLA OPERATOR OF MIXED ORDERS

As it was supposed in [8], we write down nabla
operator of so-called mixed orders in the following way:

By _5 C 5 C 5 C
V\c,xvﬁvzean)?+ech5+eZgDzy, @

(m-l<oa<mn-1<p<n,p-l<y<p).

From formula (4) it follows that unlike the
expression (2) the orders of derivatives by the variables
of x, y, z may have unequal arbitrary numerical values
that significantly increase the possibilities of Maxwell’s
equations (la, b) for receiving different fractional
differential equations. It is also evidently that using
Caputo’s operators in formula (4) in the form of (3), the

scalar functions f(x, y,z) (and vector functions of
F(x y,z) as well) should belong to the class of the

functions AC™&{Mn.p} [w].

It can be shown that there are following main vector
relations:

Div\‘,"v'ﬁ'Y Grad\‘,"v'ﬁ'Y f(xy.z)=
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2 2 2
=[(§D§‘) +(%D5) +(SDQ/) }f(x,y,z), (5a)
Rot%PY Grad®:PY f (x,y,2)=0, (5b)
DIV RotisPY F(x,y,2) =0, (5¢)

rot, E(F,t):%aHg't), GVE(rt)=0,  (8a)
rotH(F,t):—EaE(a:'t), divy H(r,t)=0. (8b)

Rot\‘}‘v'B'Y Rot\‘}v*ﬁ'y F(xy,2)= Grad\‘;\‘/BvY Div\(;\‘/ﬁﬂ F (%, y, z)-Acting the operator rot on the first equation of (8a) and

{(EDQX)Z +(%D§)2 +(8DZY)2}|5(X, y.z).  (5d).

Let’s define the following integral vector operators
of mixed orders:

| Py =&l [x]+e 1 [y]+€ 1] 2], (62)

1P =g 1B [y.z]+€,18% [2.x]+&15P[x,y]. (6b)

Further, analogous to [5] we shall determine with (6a) a
fractional circulation in the form of a fractional linear

integral of the vector field of F along curve L

0 (F) =1 (R 12 )Ry 12, 00

a fractional flux of a vector field of F through the
surface S by the help of (6b)

OF P (F) =187y, 2] Fe +13“ [2.X]Fy + 18P [, Y]F, , (7b)

triple fractional integral on W region from the scalar
function f :

VV‘\}"E"V(f)z Iy [z]f (xy.z).  (7c)
Note, that in the formulas (7a,b,c) the integral
operators act on the Lebesgue’s measured functions, i.e.

fFe Ll(R3) [1].

At last, by means of the formulas of (7a, b, c) one
may consequently formulate and prove (similarly to [5])
the fractional theorems of Green, Stocks and
Ostrogradsky-Gauss.

Thus, in the frames of a fractional vector analysis it
was shown that the generalization of nabla operator in
the form (4) is mathematically correct.

2. THE ANALYSIS OF THE PROCESSES IN
RECTANGULAR WAVEGUIDE
STRUCTURES BY USING OF MAXWELL’s
FRACTIONAL EQUATIONS

Let rewrite Maxwell’s equation of (1a, b) for the
case when o, =03=1, and curl and divergence

operators, correspondingly, in the first and the forth
equations are determined with nabla operator in the

1,1,0c_oc_—a - 0 . Cho
form of Vi =VW_eX&+eya+eZBODQ (here

{ =Pz, where B — is a constant of the propagation,
W=(0<x<a0<y<h0<z<c)),ie.
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taking into account the second equation of (8a), we get
the following wave equations for Cartesian components

of vector of the electric field intensity E(x,y,,t;a):
? % L0 2 2 &
L2 422 Sp2|E,, —n%k? - E,,=0,(%
(8x2 o7 " g 00 JFy TSz By 000

(i+i+ o

2
B2 §D? EJ E, —nzkzaa—zEZ =0, (9b)
T

where t=wt, k=w/c —a wave number, n :\F -
an indicator of medium refraction.

Now proceed to the solution of the equations (9a,b).
To separate the derivatives of x and y and eliminate a
measureless time t, we’ll look for the solution of such
equations in the form

Exyz (% V.G ma)=e(xy) H{%Y, (C)exp(-ir).  (10)

After substituting of (10) in (9a,b), we get, first,
Helmholtz ~ equation ~ for  e(x,y)  functions
Ay ye(x, y)+1<2e(x,y):0, methods of solution of

which for the rectangular (in particular, planar)
waveguides with account of various boundary
conditions are set, for example, in [9]. Second, we get

the following fractional wave equations for f)gfyz (©)
functions:

0 a a
(6_(;8DG +1j {9) (2)=0, (112)

(Dg+1 +1) () =0, (11b)
at solution of which a dispersion equality of
k% =n%k? —p? is used (see [9]), and also in (11b) it is

taken into account that D¢ 9 5D [5].

aac
By using of initial conditions fz(“)(o):1 and
6fz(°‘)(0)/a§=i, that follow from the solution

f,(£)=exp(ig) of the equation (11b) at a =1, then
the solution (11b) may be presented in the form (see

[10])

H) (€)= Eguaa (€2 +itBuia (4), (12)
where E, g(x)= i Xk/F(ak+[3) — a Mittag-Leffler
k=0
function (see [1]).
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One can show that the equation (11a) for functions

f&;‘) (€) is equivalent the following nonhomogeneous

Cauchy’s problem for functions
¢
gx,y(g)zj.o fry (6)dG:
Do+ 41 Xoc) =i,
(0 c )9 y(C) ! 13)

9\%) (0)=0, ag{%(0)/c=1.
The solution of (13) problem is glven by the following
formula [10]:

) C) = iJ.;;(C_t)a Eoc+1,(x+1|:_(€_t)a+l:|dt+

+CEqu12(-C*). (14)

After integrating in (14) and further differentiation by
C, we get:

f)SO;/) (€)= Ea+1,1(—§a+l)+ ic” Ea+1,a+1(—Ca+1)- (15)

It is easy to prove that at oo =1 the solutions of (12) and
(15) transit into the function of exp(i¢).

Note that for the magnetic field a z-component is
proportional to the function of (15), and x- and y-
components correspondingly to the function of (12).

l.OKa(Q' a. u. 3 ¢ au

0. 0 v 10
0.5 -
2
0.0 1

0 5 Gau 10 5l rad

The dependences of a relative coordlnate of ¢ at
a=0,8;0,9;1 of the coefficient K, () of a power fading

of — (a), phases difference of @, () between a

longitudinal and a transverse components of electric
and magnetic fields — (b)

Let’s use now the obtained solutions for the
investigation of dissipative and polarization processes.
As it follows from Umov-Pointing theorem the
expression for a mean flux of an active power going
through cut S of a rectangular waveguide structure
equals [9]

Pa(g):éRe JE(C ,H*(g)}zds =

)
=R O)Re| 15 (11" (0)],

(16)

i.e. a power fading coefficient with a distance is
determined by the following formula:
_ P(x (C) _ 2 a+l
Koc (C) - Pa (0) - E(x+l,l(_€ )"‘

S HP (—C(Hl) Eartoit (—C(Hl) :

17)
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In Figure there are graphs the function (17) at
o =0,8;0,9;1. Besides, in Fig. 1b there are graphs of
phase shifts of @, ({)=arg fz(“)(g)—arg f)gg,)(g)

between longitudinal and transverse components of
electric and magnetic fields (it means that by means of
fractional fields one may study some polarization
phenomena).

3. THE INVESTIGATION OF
ELECTROMAGNETIC RADIATION
DISTRIBUTION IN CYLINDRICAL

WAVEGUIDE STRUCTURES BY MEANS OF
A FRACTIONAL WAVE EQUATION

Based on the fact that nabla operator Vy in a
cylindrical coordinate system is written down as

110 o . 0 . 0 = pCRHa
V'~ =Vw =6 —+6 ——+6 Df, 18
W W pap (0] P ZBO C ( )

one may get the following wave equations for the
transverse (Ep’(P,Hp'(p)(p,C,‘c;a) and longitudinal
(E;.H)(p.Cmior)

magnetic fields:

o
A__2 ch
( p? BCC

components of electric and

2
nk? j—ZJ(Ep’Q, H,)=0,(19a)
T

62
(Ap+ﬁ2%Dg+1—n2k2¥J(Ez,Hp,q,)=o, (19b)

where A, = 8(p6/8p)/p6p— a radial part of Laplace’s

operator in cylindrical coordinates (equations (19a, b)
are written down for the case of axis symmetric modes
distribution in a  cylindrical region  of

W:=(p<a0<z<c)).

Evidently that solution of (19a,b) equations are
found in accordance with an algorithm used in previous
paragraph. Writing down the solutions of these
equations in the form

(Ep’¢’HZ)(p’Q’T;a):[ €0 (P):; (P)} (G)ex
(EZ'Hp,w)(p'C’T;O‘) [ez p),h,, (p)] (€)exp

P(-i7),
(—it),

we get that r, (C) function is given by the expression

(15) and s, (&) function by the expression (12),

accordingly. It means that the fading function in this
case coincides with the expression (17) (polarization
characteristics are analyzed analogically as well).

In the conclusion note that by means of this
mathematical formalism in [11] it was studied the
distribution of electromagnetic radiation in optical
waveguides.
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CONCLUSIONS

Thus, on the basis of introducing a new nabla
operator of so-called mixed orders (as it was shown, not
contradicting a fractional vector analysis) there were got
mathematically strict fractional wave equations of
fractional Maxwell equations. It was shown that using
of these equations to rectangular and cylindrical
waveguide structures allows to study their dissipative
and polarization characteristics.

At last, one may do the assumption that there must
be some geometric ways of a fractional derivative o
indicator definition (then the problems of similar type
will be mathematically and physically closed).
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UCIOJIb30BAHUE JIPOBHBIX YPABHEHU MAKCBEJLJIA JIJISI ACCJEJIOBAHUS
BOJIHOBO/HBIX ITPOIIECCOB

H.B. Maxcioma, F0.A. Chunuenxo, B.H. I’ puzopyk

C momomiplo omeparopa Ha0ja, 3alTHCAHHOTO C OJHOBPEMEHHBIM HCIOJNB30BaHUEM Kak au((epeHIHaTbHbIX
OIIepaToOpOB C IICJOYHCICHHBIMH TMOPSIKAaMH, TaK W JpoOHBIX nuddepeHnnaIbHbIX omnepaTtopoB Kamyto,
OTIPENIEIAIOTCSL  OTEPaTOphl TPAIMeHTa, TUBCPICHIUH K pOTOpPA, IIPOBEPSECTCS BBHIMOJHUMOCTh BEKTOPHBIX
COOTHOIIICHHH JpOOHOTO BEKTOPHOTO aHaim3a, ApoOHBIX hopmyn ['puna, Crokca u Octporpaackoro-I"aycca. J{ns
KOHKPETHOTO BBIPAXKEHUS orepaTopa Hababl (KOMIIOHEHTHI HAOJIBI BAOJb OCEH X U Y UMEIOT €MHUYHBINA MOPSIIOK, a
BJIOJIb OCH Z, COOTBETCTBEHHO, JPOOHOE 3HAUCHHE B MHTEpBAJe OT HYJS O €IWHHIIBI) 3alHMCHIBAIOTCS APOOHBIE
ypaBHeHus MakcBemia. Ha oOCHOBe clenyromux W3 HUX JPOOHBIX BOJHOBBIX YpPaBHEHUH aHATU3UPYIOTCS
JIMCCUTIATUBHBIE W TIOJSPHU3AIMOHHBIE MPOLECCHl TMPHU PACIPOCTPAHEHUH JJICKTPOMATHUTHBIX BOJH Kak B
MPSIMOYTOJIBHBIX (TUTAHAPHBIX ), TaK U B IMIIMHAPUYECKUX BOJTHOBOJAHBIX CTPYKTYpaX.

BUKOPUCTAHHA JPOBOBHUX PIBHAHb MAKCBEJUJIA JJIA JOCJJIIIKEHHA XBUJIEBOAHUX
IMPOLIECIB

M.B. Makcioma, F0.A. Cninuenko, B.1. I'puzopyx

3a 01MOMOT010 orepaTopa HaOJIH, 3aIIMCaHOTO 3a 0THOYACHOTO BUKOPUCTaHHS SIK AU(EpEHIaIbHUX OTIepaTopiB
3 IIJIOYNCENPHUMH HOPSIKaMH, Tak i ApoOoBHUX audepeHnianpHuX onepaTopiB Kamyro, BU3Ha4al0ThCs oniepaTopu
rpajiieHTa, AMBEPreHIIi Ta poTOpa, IEepeBIpse€TbCS BUKOHYBAHICTh BEKTOPHHUX CIIIBBIIHOIIEHb JPOOOBOTO
BEKTOPHOTO aHami3y, ApoboBux ¢opmyn ['pina, Ctokca ta Octporpaackkoro-I'ayca. JIJis KOHKPETHOTO BHpa3y
omepatopa HaOmM (CKIaI0Bi HAOIM Y370BXK OCEH X Ta Y MAalOTh OAMHUYHHUH MOPSIOK, a y3JA0BXK OCi Z, BiJIMOBIAHO,
Jipo0OOBe 3HAYCHHS B 1HTEpBaJi BiJ HYJS 10 OJHMHHII) 3aMHUCYIOThCSA ApoOOBi piBHAHHA MakcBeiia. Ha ocHOBI
BUIUIMBAIOYMX 13 HUX JPOOOBUX XBHJIBOBHX DIBHSHB aHANI3YIOTHCS JWMCHUIIATHUBHI Ta MOJIAPH3aLidHI MPOIECH MPH
PO3MOBCIOIKEHH] €IEKTPOMATHITHAX XBHJIb K Y MPSAMOKYTHHX (IUTAaHAPHUX), TaK 1 B HWTHAPUIHAX XBHICBOIHUX

CTPYKTYypax.
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