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The parallel momentum correction technique is generalized for relativistic approach. It is required for proper
calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is
shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without
calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known.
The first relativistic correction terms for Braginskii matrix coefficients are calculated.
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INTRODUCTION

It was shown recently [1] that relativistic effects in
collisional neoclassical electron transport in hot plasmas
appear even for electron temperatures about few tens
kiloelektronvoltage, typical for D-T fusion reactors, and
surely are non-negligible for future aneutronic fusion
reactors with temperatures about 70 keV. However, all
transport codes developed to date and applied for
simulations of the reactor scenarios are still based on the
non-relativistic approach and the validity of the model
for hot electrons is not justified. Fully relativistic
description of neoclassical transport processes based on
a general relativistic kinetic theory requires a
development of new transport codes from scratch. In
contrast, the main advantage of the approach proposed
in [1] is the possibility to take the relativistic effects into
account without making any significant changes in
transport solvers.

As it was suggested in [1], it is possible to
reformulate the non-relativistic transport model to take
into account the relativistic effects by modification of
the energy-dependent part of the transport coefficients,
while the pitch-dependent part can be calculated from
the mono-energetic solver of the non-relativistic drift-
kinetic equation (DKE). With a proper choice of
parameters and the right-hand-side of DKE, the output
parameters of such solver can be re-interpreted as
relativistic ones and the transport fluxes can be
calculated according to relativistic definitions [1, 2].

Alternatively, there is the way (see [3] and the
references therein) to calculate transport fluxes without
solving the DKE. The key point in this method is the
representation of both distribution function and fluxes

as an expansion in Sonine polynomials Lf’/ 2)( x) (here,
X is the normalized energy) followed by the calculation
of the first moments of the DKE. As was shown in our
previous publication [2], this method can also be
effectively modified to take the relativistic effects into
account.

In this paper, the electron fluxes of particles and heat
are derived from the relativistic DKE and represented as
an  expansion in Lga)(x) polynomials ~ with
o0=3/2+R, where R the non-linear function of
T,/m,c? (in classical limit ¢ = o< tends to zero), is the
measure of relativistic effects. Finally, applying the
same algorithm as in [3], the corresponding Braginskii

matrix coefficients are calculated and the first

relativistic correction terms are obtained.

1. MOMENT EQUATIONS FOR PARALLEL
FLUXES CALCULATION

In the conventional moment-equation method for the
parallel neoclassical fluxes calculation [3-5], the non-
relativistic distribution function was expanded by
Sonine polynomials LSE/ 2) (x), and its zeroth and first
moments give the parallel fluxes of particles, I, and
heat, q,;, respectively. In relativistic approach for
electrons, the relation between relativistic fluxes of a
heat, energy and particles differs from the classical one
[6] by the additional relativistic term [1, 7],

qe = Qe-(g+fR) T.T,, (1)
where T. = [ d3uvf, is the electron flux of particles
and Q, = [d3u vm,c?(y — 1)f, is the electron flux
of energy, respectively, U = VY is the momentum per
unit mass with relativistic factor ¥, and

_ o (Ks(u) 5_ 15
R(uy) = iy (Kz(ﬂr) - 1)'5 e (> 1),
)

where K, (x) is the modified Bessel function of n-th
order, and U, = ”mec2 /T,. In this case, the moment-
equation method can be directly applied with expansion

over generalized Laguerre polynomials L,(qa)( K) with
a=3/24+R and k =, (y —1). Here, Lg“)(x) =1
LP) = a+1—x, et [2].
Following [3], the parallel flow moments can be
introduced by
n Ve = [ d3uv L (0)f,. 3)
Then the moment i = 0 can be identified with the flux
of particles,
neVio = [ dPuvf, =T,
with the parallel flow velocity V|, while =1
corresponds to the parallel heat flux,
n Vi =-[d3u (k—5/2 = R) v f, = -qf /T.,.
Representing f, as the Legendre polynomials series
and taking into account that only the 1st Legendre
harmonic contributes in parallel fluxes, one can replace

. +1
fe with &fer, where f,; = (3/2) [, d¢&f, and
& =y /u. In order to make it consistent with Eq. (3), it
is convenient to represent fp1 as a series

ISSN 1562-6016. BAHT. 2017. Nel(107)

92 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, Ne 1. Series: Plasma Physics (23), p. 92-95.



meu
for = 52w () Fory (0 Ty aV§ LV G), - (4)
where Fp; (k) is the electron relativistic Maxwell-
Jittner equilibrium distribution function,

Fepy(u) = ﬂg/nTige Cemy () e o=, (%)
with
T ehr
Ceny(1,) = AT T +o (e > 1),
(6)

and the weight function

3/2
2
w(k) = K" (V+1) eM](K) 7
The series coefficient,
_ 0 _T@+5/2) . 0 _ 300!
G = A TR with a; = (2043 ®)

can be found from the orthogonality of LE“)(K] [2]. One
can check that in the non-relativistic limit ¢ = o<, i.e.
with w = 1 and R = 0, the expressions in Egs. (4)-(8)
perfectly fit the non-relativistic formulas given in [3].

Applying for linearized collision operator with
parallel momentum conservation the Taguchi approach
[4], which perfectly works in weakly collisional
plasmas,

CP(£,) = v WL(E,) + E(CE (o) + VR (W) fr),
©)
one can represent CE(f,1) = CE(fy) + CE(fun) as
CE(far) = 2 2 Fory () 3 4FL (),

where the relat1v1stlc neoclassical parallel collisional
friction forces have been introduced:

_ f dPu mau L (6)x

(10)

e
neFy;j

(Cee[étfep FeM]] + C%[Femyy Efen] + CEi[éfel'FiM]])'

(1)
The approximate collision operator in Eq. (9) with fzq
from Eq. (4) and C{ from Eq. (10) preserves the
property of the momentum conservation.
Using feq defined in Eq. (4), one can find that the
integrals in Eq. (10) are well defined and can be
represented as a series through the parallel fluxes,

neFlll Z] ”][ (Mee + Nee) + le Ne Mel]

with the transport matrix coefficients

M = ;L:f d3u u"LE“)Cee [mTL:” Lg-a)erM], Few},

NEE = 228 [ duwyLC [ Fopgy, 2 LSO WF o

M= %‘f d3u uy LS9 ce [mTL:" L](a)WFeM]; FiM],

(13)
where 1,, is the collision time for corresponding
particles.

From the momentum conservation these matrix
coefficients satisfy the relation My + Niif = 0. The
electron-ion collisions are considered in my/m; — 0
limit. Again, in the non-relativistic limit these matrix
coefficients turn into the well-known Braginskii matrix
coefficients (see, for example, [6]).

As far as the matrix elements Ml-ajb and Ni‘}b can be

directly calculated, one can turn the adjoint
monoenergetic rDKE into the set of algebraic equations

(12)
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with respect to the parallel fluxes [2]. Let us introduce
adjoint mono-energetic rDKE as

V(ge) + vy (WL(ge) = bvyFory.  (14)
Here, V(g.) is the relativistic Vlasov operator [1],
L(g.) is the Lorentz operator, b = B/B, is the
normalized magnetic field and
Ve (w) = VEE (1) 4 V& (u) is the relativistic frequency of
pitch angle scattering with V& (u) given in [9]. Solution
of this equation is determined by the relativistic mono-
energetic transport coefficients, calculated in [2].
Multiplying Eq. (13) by fe/Femj, integrating in
momentum space and then averaging over the magnetic
flux surface, we can derive the expression:

oo
[[[ywvg L Dg,], + Z ey [ywvgL@Dg] ])} _

= -[D5; ;AT + [[L(ia)(K)D%]]iA%'[[Dn]] iAS,

(15)

where (...) is the averaging over magnetic flux surface,
D, are the relativistic mono-energetic transport
coefficients, which are depended on the collisionality,
v = RyvE(w)/v (see [8]), A% are the thermodynamic
forces,

P R -
p. T, T. T, (B?)
with electron pressure P, = NeT,, electron density Mg,
temperature of electrons Tg, radial and parallel electric
fields, E, and E|, respectively; the prime means the
radial derivative and the angle brackets mean the
averaging over the magnetic flux surface.
The coefficients C;; are defined as

MEE+NEE M}

cj = an, [ l]Tee L+ T—:] (16)
Here it is accounted that the mono-energetic transport
coefficients satisfy the Onsager symmetry relations,
D3, = -Dy3. The operation of energy convolution with

the relativistic Maxwellian [8] is defined as

2 Y+ 12
o0l = =G [ der2ey (1) 1200,

(17)

If the series in Eq. (4) are truncated after the second
term (i = 0, 1), the heat and particles fluxes are directly
defined.

2. CALCULATION OF MATRIX ELEMENTS

The differential part of relativistic collisional
operator which describes the electron-electron collisions
for the 1st Legendre harmonic is taken in the form:

ce [gfep eM]]

=——u [D -F“( Wfer |-V5 WS fers

(18)
where DZE(u) and FZ¢(u) are diffusion and friction
coefficients respectively, and V() is the pitch angle
scattering frequency, which all together describe the
corresponding processes of the test electrons over the
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background Maxwellian. The complete expressions for
those one can find in [9]. This operator is necessary for
matrix coefficients M in Eq. (13).

The part of colhslonal operator responsible for the
collisions between electrons and ions can be taken in the
Lorentz limit as: '

Co'fos Fnul = V5 (W& fon - (19
where the pitch-angle scattering frequency V4 (u) is
taken in mg/m; — 0 limit,

ul

(u) - VeOZeff A te
with Zger =Y niZi /. The integral part of the
relativistic  collisional operator, deviation from
equilibrium, f,, is needed to account the momentum
correction for electrons and used in matrix coefficient
N{?. The complete expression as well can be found in
[91.

Since U, = mecz/ T, is large, the weakly relativistic
limit can be applied when the integrands in Eq. (13) are
expanded in series over 1/, In this approach, the Miajb
and N{}b matrix elements can be represented as a sum of
the well-known non-relativistic part (not shown here;
for definition, see, for example, [6]) plus the first order
relativistic correction terms, )

MEP = MO + oM
ab(0 1
NP = NP + — NG, (20)

For integration in Eqs. (13), the method of
generating function (similar to [10]) was applied. In
order to reduce the number of integrals, the generating
function,

— ny(@)
9(P.1) = s exp () = "L
has been used [11]. Replacmg in Eq. (13) the
polynomials L{*’() by g(p, ) and L (x) by g(q, k),
the results can be expanded then in series of p‘q/ with
i,] =0,1,2, and the coefficients of this series
corresponds to the desired transport coefficients. The
integration is performed by the Mathematica package.
Finally, the relativistic corrections for electron-
electron transport coefficients M have been
calculated. Since the final expressions for the transport

coefficients are bulky, only numerical evaluation of the
first relativistic correction in shown:

OMEE = 6.55; OMS; ~ —6.85; OMES ~ —0.43;

OM:E = 2.96; SMy; ~ 19.56; oM7s ~ —17.80;

OMSE = 2.22; SM5; =~ 12.23; 6M55 =~ 33.93.
Similarly, one can calculate the transport

coefficients N%, which are related to the integral part of

for electron-electron collisions operator:
ONgs = =5.76; ONg; ~ 1.17; ONgs = 2.92;
ONys =~ 1.52; ON{f ~ —8.43; 5Nee ~ —4.89;
ONg§ ~ 5.06; ONs7y ~ —4.33; 5N ~ —8.37.
Finally, the transport coefficients for electron—ion
collisions are calculated:
SMES ~ 4.83; 5Mm ~ 3.50; oM} ~ 3.44;
5M1n ~ 3.50; oMy} = 10.08; 5M17 = 6.31;
OMEL = 3.44; 5M71 ~ 6.31; SM$ ~ 13.94;
A practical importance of the relativistic corrections
for transport coefficients in fusion plasmas can be
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demonstrated straightforwardly. Let us estimate the
corrections for T, = 25 keV, i.e. 4y = 20, expected as
the typical value for thermonuclear reactors. Then, the
relativistic  correction terms in electron-electron
transport coefficients differs from the classical ones by
amount:

1 1
- OMES ~ 045 MEE©; L ONGE ~ 040 NEE©;
T T
1 ee(0), ee(0)
oMt ~ 0.63 T —5Nf-’*-’ ~ 0.11 N&©,
T T'
1
H—5M"’"’ ~ 0.27 M@, M—SN""" ~ 0.14 N5 ©;
T‘ T
— Mg ~ 0.06 M§§(°), —ONEE ~ 043 N&E©,
T nu'T
0 0
— MSE ~ 0.33 MEEC ), L NS ~ 0.75 Nie©;
T T
0 0
— M ~ 0.37 MEE®), —5NEE ~ 0.35 NE©),
T' T'
~ 0), ~ 0).
— M ~ 038 M@, —6NgE ~ 0.19 NE©;
T‘ T
— MEE ~ 0.26 ME©®; —6Nge ~ 0.17 NSO,
Hr Hr
0 0
— M5 ~ 0.29 My5¢ ), Longs ~ 023 Ny @,
T T

i.e. typical relativistic correction term for matrix
coefficients is found to be noticeable compare to the
respective non-relativistic value.

The same procedure applied for the electron-ion
transport coefficients leads to the following relativistic
correction terms:

1 .
— Mg ~ 0.24 MEX®
.ur
— ME ~
-
1 .
— OM§;
T
1
— OM;
T
1 .
— oMy
-
> SME,
Hr
ie. for T, = 25 keV the relativistic corrections for
electron-ion collisions are approximately in the
10...20% range. Note, that in electron-ion collisions
only the electrons are relativistic particles.

0.11 ME©
~ 0.09 ME©
1~ 0.15 ME©,
~ 0.07 ME©,

~ 0.10 M2,

CONCLUSIONS
In this paper, the moment-equation technique,
previously developed for non-relativistic plasmas [3-5],
was adapted to use in the relativistic approach. This
technique extends a range of applicability of the
neoclassical transport theory for correct calculation of
the electron parallel fluxes in high temperature plasmas.
The weakly relativistic limit seems to be sufficient for
applications in reactor plasmas with the -electron
temperature about several tens keV. It is shown in the
paper that the system of linear equations obtained for
the parallel fluxes of particles, (bV|3) =TI\°/n, and
heat, (bV,) = -qf /n,T., can be solved directly, without
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calculation of the distribution function, using only the
mono-energetic transport coefficients. Note, that
relativistic mono-energetic transport coefficients can be
pre-calculated by any non-relativistic solver [8]. As the
main result of the paper, the first order relativistic
correction terms for Braginskii matrix elements have
been calculated.
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PEJATUBUCTCKUE HEOKIIACCUYECKHUE MATPUYHBIE KOO®OUIIUEHTHI
C COXPAHEHUEM NMIIYJIBCOB

HU. Mapywenko, H.A. A3apenkog

Metox coxpaHEeHHS MPOJOIBHBIX UMITYJICOB OOOOIIEH I ONMUCAHUS CIAOOPEIATHBUCTCKUX 3JIEKTPOHOB. JTO
HEO0OXOMMO JJIsl TIPABWJIBHOTO BBIYHMCICHHUS MPOJOJBHBIX HEOKIACCHUECKUX IOTOKOB M, B YAaCTHOCTH, IS
OyTcTpen-Toka TIpH TEPMOSIACPHBIX Temmeparypax. Iloka3aHo, 4YTO TOJTy4YeHHas CHCTeMa JIMHEHHBIX
anreOpandecKux YpaBHEHUH IUTS MPOOJBHBIX TTOTOKOB MOXET OBITh pEIlicHa HEMOCPEICTBCHHO, 0¢3 BBIYMCICHUS
(GYHKIMM pacnipeeNeH s, eCl PeIsSTUBICTCKIE MOHOIHEpreTHYecKnue K03 (HUINEHTH! yke n3BecTHBI. [lomyueHs
YUCJIICHHBIC 3HAYCHUS I nepBoﬁ peﬂﬂTHBHCTCKOﬁ HOHpaBKI/I JJIs1 BBIYHUCJICHUSA ManI/I‘-IHbIX KO3¢)(1)I/ILU/ICHTOB
Bparunckoro.

PEJATUBICTCBKI HEOKJIACUYHI MATPUYHI KOE®INIEHTHN
31 3BBEPITAHHAM IMITYJIBCIB

1. Mapywenko, M.O. Azapenkos

Merton 30epiraHHs MO3AOBXKHIX IMITYJIBCIB y3arajJbHEHO IJISi ONHCY CIa0OpeNsATHBICTCHKUX eleKTpoHiB. Lle
HEOOXITHO IS MPAaBWIHHOTO OOYMCIICHHS TMO3JOBXKHIX HEOKJIACHYHHUX MOTOKIB i, 30KpeMa, s OyTCTpen-cTpymy
MpH TEPMOSJCPHUX Temreparypax. llokazaHo, o oTpMMaHa cHcTeMa JIHIMHUX anreOpaiyHuX pIBHAHB IS
MO3/IOBXKHIX TIOTOKIB MOKe OyTH BHUpilieHa Oe3mocepeHbo, 03 O00YHCICHHS (YHKINT PO3MOALTY, SKIIO
PENSTUBICTCHKI MOHOGHEpPreTH4Hi KoedilieHTH Bxe BimoMi. OTpUMaHO 4YMCIOBI 3HA4YeHHS IS TEpIIOi
PENSATUBICTCHKOT MOMIPABKY JUIsi O0YKMCIICHHs MaTpuYHuX KoediienTiB bparincekoro.
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