
RELATIVISTIC NEOCLASSICAL TRANSPORT COEFFICIENTS WITH 
MOMENTUM CORRECTION 

I. Marushchenko, N.A. Azarenkov 

V.N. Karazin Kharkiv National University, Kharkov, Ukraine 
 

The parallel momentum correction technique is generalized for relativistic approach. It is required for proper 
calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is 
shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without 
calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. 
The first relativistic correction terms for Braginskii matrix coefficients are calculated. 
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INTRODUCTION 
     It was shown recently [1] that relativistic effects in 
collisional neoclassical electron transport in hot plasmas 
appear even for electron temperatures about few tens 
kiloelektronvoltage, typical for D-T fusion reactors, and 
surely are non-negligible for future aneutronic fusion 
reactors with temperatures about 70 keV. However, all 
transport codes developed to date and applied for 
simulations of the reactor scenarios are still based on the 
non-relativistic approach and the validity of the model 
for hot electrons is not justified. Fully relativistic 
description of neoclassical transport processes based on 
a general relativistic kinetic theory requires a 
development of new transport codes from scratch. In 
contrast, the main advantage of the approach proposed 
in [1] is the possibility to take the relativistic effects into 
account without making any significant changes in 
transport solvers. 

As it was suggested in [1], it is possible to 
reformulate the non-relativistic transport model to take 
into account the relativistic effects by modification of 
the energy-dependent part of the transport coefficients, 
while the pitch-dependent part can be calculated from 
the mono-energetic solver of the non-relativistic drift-
kinetic equation (DKE). With a proper choice of 
parameters and the right-hand-side of DKE, the output 
parameters of such solver can be re-interpreted as 
relativistic ones and the transport fluxes can be 
calculated according to relativistic definitions [1, 2]. 
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Alternatively, there is the way (see [3] and the 
references therein) to calculate transport fluxes without 
solving the DKE. The key point in this method is the 
representation of both distribution function and fluxes 
as an expansion in Sonine polynomials   (here, 

 is the normalized energy) followed by the calculation 
of the first moments of the DKE. As was shown in our 
previous publication [2], this method can also be 
effectively modified to take the relativistic effects into 
account. 
In this paper, the electron fluxes of particles and heat 
are derived from the relativistic DKE and represented as 
an expansion in  polynomials with 

, where , the non-linear function of  
 (in classical limit  tends to zero), is the 

measure of relativistic effects. Finally, applying the 
same algorithm as in [3], the corresponding Braginskii 

matrix coefficients are calculated and the first 
relativistic correction terms are obtained. 
 
1. MOMENT EQUATIONS FOR PARALLEL 

FLUXES CALCULATION 
 
In the conventional moment-equation method for the 
parallel neoclassical fluxes calculation [3-5], the non-
relativistic distribution function was expanded by 
Sonine polynomials , and its zeroth and first 
moments give the parallel fluxes of particles, , and 
heat, , respectively. In relativistic approach for 
electrons, the relation between relativistic fluxes of a 
heat, energy and particles differs from the classical one 
[6] by the additional relativistic term [1, 7],  

                (1) 
where  is the electron flux of particles 
and  is the electron flux 
of energy, respectively,  is the momentum per 
unit mass with relativistic factor , and  

 
, 

    where 
(2) 

 is the modified Bessel function of n-th 
order, and . In this case, the moment-
equation method can be directly applied with expansion 
over generalized Laguerre polynomials  with 

 and  Here, , 
, etc. [2].  

 Following [3], the parallel flow moments can be 
introduced by 

                 (3) 
Then the moment  can be identified with the flux 
of particles,  

, 
with the parallel flow velocity , while  
corresponds to the parallel heat flux,  

. 
Representing  as the Legendre polynomials series 

and taking into account that only the 1st Legendre 
harmonic contributes in parallel fluxes, one can replace 

 with , where  and 
. In order to make it consistent with Eq. (3), it 

is convenient to represent  as a series 



         (4) 

where  is the electron relativistic Maxwell-
Jüttner equilibrium distribution function,  

           (5) 
with  

 
   (6) 

and the weight function 

                 (7) 
The series coefficient,  

             (8) 

can be found from the orthogonality of  [2]. One 
can check that in the non-relativistic limit , i.e. 
with  and , the expressions in Eqs. (4)-(8) 
perfectly fit the non-relativistic formulas given in [3].  

Applying for linearized collision operator with 
parallel momentum conservation the Taguchi approach 
[4], which perfectly works in weakly collisional 
plasmas,  

 

  
(9) 

one can represent  as 
 

        (10) 

where the relativistic neoclassical parallel collisional 
friction forces have been introduced: 

 
 

      (11) 
The approximate collision operator in Eq. (9) with  
from Eq. (4) and  from Eq. (10) preserves the 
property of the momentum conservation. 

Using defined in Eq. (4), one can find that the 
integrals in Eq. (10) are well defined and can be 
represented as a series through the parallel fluxes,   

      (12) 

with the transport matrix coefficients  
, 

, 

, 
      (13) 

where τab is the collision time for corresponding 
particles.  

From the momentum conservation these matrix 
coefficients satisfy the relation  The 
electron-ion collisions are considered in  /   
limit. Again, in the non-relativistic limit these matrix 
coefficients turn into the well-known Braginskii matrix 
coefficients (see, for example, [6]). 

As far as the matrix elements  and  can be 
directly calculated, one can turn the adjoint 
monoenergetic rDKE into the set of algebraic equations 

with respect to the parallel fluxes [2]. Let us introduce 
adjoint mono-energetic rDKE as 

            (14) 
Here,  is the relativistic Vlasov operator [1], 

 is the Lorentz operator,  is the 
normalized magnetic field and 

 is the relativistic frequency of 
pitch angle scattering with  given in [9]. Solution 
of this equation is determined by the relativistic mono-
energetic transport coefficients, calculated in [2]. 
Multiplying Eq. (13) by , integrating in 
momentum space and then averaging over the magnetic 
flux surface, we can derive the expression:  

 

   (15) 

 
   

where  is the averaging over magnetic flux surface, 
 are the relativistic mono-energetic transport 

coefficients, which are depended on the collisionality, 
 (see [8]),  are the thermodynamic 

forces,  
 

 
with electron pressure , electron density , 
temperature of electrons , radial and parallel electric 
fields,  and , respectively; the prime means the 
radial derivative and the angle brackets mean the 
averaging over the magnetic flux surface. 

The coefficients  are defined as  

                 (16) 
Here it is accounted that the mono-energetic transport 
coefficients satisfy the Onsager symmetry relations, 

. The operation of energy convolution with 

the relativistic Maxwellian [8] is defined as 

.

(17) 

If the series in Eq. (4) are truncated after the second 
term ( ), the heat and particles fluxes are directly 
defined. 

2. CALCULATION OF MATRIX ELEMENTS 
 

The differential part of relativistic collisional 
operator which describes the electron-electron collisions 
for the 1st Legendre harmonic is taken in the form: 

 

 
      (18) 

where  and  are diffusion and friction 
coefficients respectively, and  is the pitch angle 
scattering frequency, which all together describe the 
corresponding processes of the test electrons over the 

ISSN 1562-6016. ВАНТ. 2017. №1(107)                                                                                                            93 



background Maxwellian. The complete expressions for 
those one can find in [9]. This operator is necessary for 
matrix coefficients  in Eq. (13). 

The part of collisional operator responsible for the 
collisions between electrons and ions can be taken in the 
Lorentz limit as: 

 ,                 (19) 
where the pitch-angle scattering frequency  is 
taken in /   limit, 

 
with  The integral part of the 
relativistic collisional operator, deviation from 
equilibrium, , is needed to account the momentum 
correction for electrons and used in matrix coefficient 

. The complete expression as well can be found in 
[9].  
 Since  is large, the weakly relativistic 
limit can be applied when the integrands in Eq. (13) are 
expanded in series over  In this approach, the  
and  matrix elements can be represented as a sum of 
the well-known non-relativistic part (not shown here; 
for definition, see, for example, [6]) plus the first order 
relativistic correction terms, 

 
                  (20) 

For integration in Eqs. (13), the method of 
generating function (similar to [10]) was applied. In 
order to reduce the number of integrals, the generating 
function,  

(- ,  
has been used [11]. Replacing in Eq. (13) the 
polynomials  by  and  by , 
the results can be expanded then in series of  with 

 0, 1, 2, and the coefficients of this series 
corresponds to the desired transport coefficients. The 
integration is performed by the Mathematica package. 

Finally, the relativistic corrections for electron-
electron transport coefficients  have been 
calculated. Since the final expressions for the transport 
coefficients are bulky, only numerical evaluation of the 
first relativistic correction in shown:  

 
 

 
Similarly, one can calculate the transport 

coefficients , which are related to the integral part of 
for electron-electron collisions operator: 

 
 
 

Finally, the transport coefficients for electron-ion 
collisions are calculated:  

 
 
 

 A practical importance of the relativistic corrections 
for transport coefficients in fusion plasmas can be 

demonstrated straightforwardly. Let us estimate the 
corrections for Te = 25 keV, i.e. , expected as 
the typical value for thermonuclear reactors. Then, the 
relativistic correction terms in electron-electron 
transport coefficients differs from the classical ones by 
amount:  

 

 

 

 

 

 

 

 

 
i.e. typical relativistic correction term for matrix 
coefficients is found to be noticeable compare to the 
respective non-relativistic value.  
 The same procedure applied for the electron-ion 
transport coefficients leads to the following relativistic 
correction terms:  

 

 

 

 

 

 
 

i.e. for Te = 25 keV the relativistic corrections for 
electron-ion collisions are approximately in the 
10…20% range. Note, that in electron-ion collisions 
only the electrons are relativistic particles. 

 
CONCLUSIONS 

In this paper, the moment-equation technique, 
previously developed for non-relativistic plasmas [3-5], 
was adapted to use in the relativistic approach.  This 
technique extends a range of applicability of the 
neoclassical transport theory for correct calculation of 
the electron parallel fluxes in high temperature plasmas. 
The weakly relativistic limit seems to be sufficient for 
applications in reactor plasmas with the electron 
temperature about several tens keV. It is shown in the 
paper that the system of linear equations obtained for 
the parallel fluxes of particles, , and 
heat, , can be solved directly, without
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РЕЛЯТИВИСТСКИЕ НЕОКЛАССИЧЕСКИЕ МАТРИЧНЫЕ КОЭФФИЦИЕНТЫ  
С COХРАНЕНИЕМ ИМПУЛЬСОВ 

И. Марущенко, Н.А. Азаренков 

Метод сохранения продольных импульсов обобщён для описания слаборелятивистских электронов. Это 
необходимо для правильного вычисления продольных неоклассических потоков и, в частности, для 
бутстреп-тока при термоядерных температурах. Показано, что полученная система линейных 
алгебраических уравнений для продольных потоков может быть решена непосредственно, без вычисления 
функции распределения, если релятивистские моноэнергетические коэффициенты уже известны. Получены 
численные значения для первой релятивистской поправки для вычисления матричных коэффициентов 
Брагинского. 

 
РЕЛЯТИВІСТСЬКІ НЕОКЛАСИЧНІ МАТРИЧНІ КОЕФІЦІЄНТИ  

ЗІ ЗБЕРІГАННЯМ ІМПУЛЬСІВ 

І. Марущенко, М.О. Азарєнков 

Метод зберігання поздовжніх імпульсів узагальнено для опису слаборелятивістських електронів. Це 
необхідно для правильного обчислення поздовжніх неокласичних потоків і, зокрема, для бутстреп-струму 
при термоядерних температурах. Показано, що отримана система лінійних алгебраїчних рівнянь для 
поздовжніх потоків може бути вирішена безпосередньо, без обчислення функції розподілу, якщо 
релятивістські моноенергетичні коефіцієнти вже відомі. Отримано числові значення для першої 
релятивістської поправки для обчислення матричних коефіцієнтів Брагінського. 
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