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Dispersive characteristics of a cylindrical cavity with an ideally conducting outer wall has been investigated, 

whose radius is described by a sinusoidal-periodic dependence on the azimuth angle. From the convergence of the 

infinite determinant (dispersion equation), we obtain a positive definite bounded algebraic form, whose properties 

follow the dispersion characteristics of both a smooth and a corrugated cavity. On the basis of the obtained algebraic 

form, the variances of the first harmonics of a corrugated cavity with an even number of corrugations are investigat-

ed. The obtained analytical dependences correspond quantitatively to the experimental data. 
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INTRODUCTION 

Corrugated resonance systems are widely used in 

various microwave devices. For effective using of such 

systems, it is necessary to know exactly their eigenfields 

and cut-off frequencies. Traditional methods for calcu-

lating the cut-off frequencies and eigenfields fields of 

such complex structures require the use of simplifying 

assumptions about the form of the fields. The most uni-

versal method is the derivation of the dispersion equa-

tion in the form of an infinite determinant, followed by 

its circumcision. However, this method contains a num-

ber of obvious drawbacks. In this paper, we propose a 

different approach to analyzing the dispersion properties 

of corrugated systems. On a particular example of a 

sinusoidal corrugated waveguide with ideal walls, the 

main points of this method are shown. 

1. TYPES OF OSCILLATIONS OF A 

CYLINDRICAL CAVITY WITH SINUSOIDAL 

CORRUGATED BOUNDARIES 

IN THE AZIMUTH DIRECTION 

Consider a corrugated, ideally conducting metal cav-

ity, in the cross section of which the radius of the lateral 

surface varies according to the law (see Fig. 1): 

                        MRR sin1
0

,            (1) 

where    azimuth angle in a cylindrical coordinate 

system, 1M  is integer, 1
0





R

R
, R  is the 

depth of corrugation, 
0

R  is average radius of the cavity. 

We consider that there is a vacuum inside the cavity. 

Along the axis z  it is unlimited, and is located in the 

external, directed along the axis of the cavity, a constant 

magnetic field of strength 
0

H


 finite quantity.  

The possible modes of oscillations of such a metal 

cavity can be characterized on the basis of the mode of 

oscillation of the anode block of the magnetron [1]. 

In the cross section, the cavity is a closed chain of 

completely identical M  hollow cavities, arranged at 

equal distances from the axis of the cavity (under the 

hollow cavity we mean the recess of the corrugation). 

 
Fig. 1. Cross section and obtaining boundary conditions 

for the electric field strength in a cavity with an ideally 

conducting lateral surface. An example is taken 

of a cavity with a number of corrugations 5M  

In the frequency range under consideration, only one 

(lower) mode of oscillation is excited in each of these 

cavities. The above-described chain hollow cavity can 

be regarded as a ring rolled into a periodic sinusoidal 

retarding system, which is a kind of comb systems with 

a metallic base. 

We assume that the resonance condition for the 

waves in the considered cross section of the cavity, as in 

any ring cavity, is the equality of an integer number of 

cavity wavelengths to the circumference of its mean 

radius [2]. If we denote the wavelength in the cavity (in 

the azimuth direction along the surface of the cavity of 

radius 
0

R ) through 
m

 , then the resonance condition in 

the cavity will be next: 

  
m

nR 
0

2 , ...,3,2,1,0n  (2) 

At the same time, condition (2) can be expressed in 

terms of the phase difference in any neighboring cavi-

ties: 

  nM
nM

 2
,

, ...,3,2,1,0n  (3) 

Consequently, the phase shift of oscillations between 

cavities can take only discrete values: 

   
M

n
nM




2
,

.  (4) 

Thus, in the general case, expression (4) indicates 

the existence in the cavity M  modes.  
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Analogously to the definition of the mode of oscilla-

tions in magnetron cavities adopted in [1], we consider 

the case, where mM 2   even number. 

When 0n  electromagnetic oscillations in all cavi-

ties occur synchronously (there is no phase shift). When 

mMn  2/  the neighboring cavities oscillate in anti-

phase, i.e. with a phase shift 
mM ,

.  

By analogy with oscillations in magnetrons, we will 

call this mode of  -type oscillations, and we will consider 

it as the main form of oscillations of a hollow cavity. 

For even M  oscillations with a phase shift for n  in 

the range mnm 2  do not differ in physical content 

from those obtained for mn 0 . Thus, it can be stat-

ed that all types of oscillations with 0n  and mn   

are degenerate; pair wise have the same frequencies. It 

is known that degenerate modes of oscillations are not 

used in magnetrons. Therefore, they are of no interest 

for the investigation of the types of waves in the hollow 

cavity we are considering. 

On the basis of the foregoing, we will further con-

sider everywhere the  -type oscillations with an even 

number of corrugations mM 2 . 

2. THE DISPERSION PROPERTIES  

OF THE CAVITY WITH SINUSOIDAL 

CORRUGATED BOUNDARIES  

IN THE AZIMUTH DIRECTION 

We will assume that the dependence of the electric 

 trE ,


 and magnetic  trH ,


 fields from time and coor-

dinates along the axis of the cavity is given by a factor 

  tzki
z

exp , which will be omitted in the future.  

To describe the field ТЕ electromagnetic waves it is 

enough to set the component  ,rH
z

, since the re-

maining components are determined by the following 

expressions: 
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where 22

z
kkk 


 is the transverse wave number, 

c
k


 , c  is the speed of light in vacuum. 

Component  ,rH
z

 is a solution of the homogeneous 

Helmholtz equation in the cross section of the cavity S: 

 0
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2

2
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. (6) 

The solution of equation (6) must satisfy the bound-

ary condition on the ideally conducting lateral surface of 

the cavity, which corresponds to zero tangential compo-

nent of the electric field strength TE of the wave: 

 
 

     
rRr

EEE 


sincos . (7) 

Angle value    in (7) is determined according to 

Fig. 1 geometric constructions, where  

   dMMRdR
r

cos
0

,   


dRdR , 

       



MRMRdRdRtg

r
cos/

1

0
. 

On the cavity axis, the solution of equation (6) must 

be limited: 

     
0

,
r

trH


.  (8) 

Due to the azimuth periodicity of the corrugated cavi-

ty with period /m, we represent the solution of (6) in the 

form of a Fourier series with respect to the angle : 
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ilm

lmlz
erkJArH , , (9) 

where 
l

A  is the amplitude of l-th harmonic,  xJ
n

 is the 

Bessel function of the first kind n-th order from the ar-

gument x . 

For -type oscillations the perturbed magnetic field (9) 

in the neighboring corrugations oscillate in antiphase, i.e. 
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Hence it follows that in order to satisfy the condition 

for the existence of -type oscillations index l  in (9) 

must take odd values: 12  ll , where 

...;3;2;1;0;1;2;3...; l  are natural numbers. In this 

case, the phase opposite condition is fulfilled for the 

corrugation period: 

   






 
  ,,, rHrHe

m
rH

zz

i

z
. 

The expression (9), taking into account the above, is 

transformed to the form:  
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1212
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.              (10) 

For the projections of the electric field strength from 

(10) we obtain expressions: 
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Substituting the values of the fields (11) in condition 

(7), we obtain the boundary condition on the lateral sur-

face of the cavity in the form:  

      

   

       

0

2cos122
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122
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l

mlm

mxx

lm

mlim

l

xJmxlmi

dx

xdJ
x

eA
,     (12) 

where after taking the derivative of the Bessel function 

it is necessary to substitute  

  


mRkxx
m

2sin1
0

. 

The left-hand side of equation (12) is a periodic func-

tion with respect to   with period m/ . Expanding the 

left-hand side of equation (12) in a Fourier series on the 

structure period, we obtain an infinite system of homoge-

neous equations with respect to the amplitudes 
l

A 
 : 

 ,,0
,





 nСA

l

m

lnl
  (13) 

where 
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xJmcosxlmi
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mlm

xx
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mm

l,n
m

2
2

2
120

2

122

2122

. 

The condition for the existence of a nontrivial solu-

tion of the system of homogeneous equations (13) is the 

requirement that its determinant be equal to zero: 
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  0det
,


m

ln
С .  (14) 

Condition (14) is the dispersion equation of the cavi-

ty with sinusoidal corrugated boundaries in the azimuth 

direction. It was first obtained in [3, 4] for - and 2-

type oscillations. However, in the present paper, when 

obtaining the dispersion equation for the identification 

of -type oscillations a physical criterion is used, con-

sisting in the requirement to change the sign of the field 

strength for neighboring corrugations. 

3. THE DERIVATION OF THE ALGEBRAIC 

FORM FOR THE CAVITY,  

WHICH IS CORRUGATED  

IN THE AZIMUTH DIRECTION 

An analytic calculation of the determinant (14) is not 

possible. However, starting from the property of its 

convergence, we construct an algebraic functional that, 

by analogy with the functional obtained in [5], contains 

the dispersion characteristics of the cavity. We briefly 

describe the method of obtaining such an algebraic 

functional. 

Suppose, for example, there is a zero infinite determi-

nant 0det
,


ln
W . The equality of an infinite determinant 

to zero indicates its convergence. From the convergence 

of an infinite determinant it follows that the sum of its 

nondiagonal elements 


ln
ln

W
,

,
  ln   and the product 

of the elements of the main diagonal 
nnnn

WQ
,,

1  [6]. 

The above properties of the elements of a converging 

infinite determinant correspond to the convergence of 

an infinite product  















 
l n

ln
W

,
1 , those 

 






  








DW
l n

ln,
1 , (15) 

where D is the finite number. 

From the inequality DP  ,  
















l n

ln
WP

,
 it 

follows that the infinite product P also converges.  

From the absolute convergence of the infinite prod-

uct P, by virtue of inequality PPW
l n

ln









 







,

, 

follows the convergence of the infinite product P .  

Thus, on the basis of the above arguments, the con-

vergence of (14) implies the convergence of the infinite 

product: 
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and the convergence of (16) implies the convergence of 

the infinite product:  
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For compute 
m

C , we use the representation: 
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Using (18), we first compute the sum 
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and then the infinite product 
m

C : 

   
     









l
lm

lm

m
xJxlmi

dx

xdJ
xC

0120

20122

0
122 . (20) 

Convergent infinite product 
m

C  in the form: 
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where  
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.  

We assume that the infinite product on the right-

hand side of (21) 
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lm

m
dx

xdJ
xC

0122

0
 converges, 

those 
m

C . Then, using arguments analogous to the 

convergence of the infinite product (15), we arrive at the 

convergence of the infinite product 





 mm

l

m

l
PPC /1 , from which the convergence 

of the infinite product follows 





 mmm

l

m

l
PPPC / . Thus, from the property of 

convergence of the infinite product (21), we can obtain 

a next bounded algebraic form: 
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2 122 , (22) 

where the absence of an imaginary unit in the numerator 

(22) follows from the property of the modulus of the 

product of two complex numbers [7]. 

It should be noted that expression (22) is valid both 

for positive values of the corrugation depth  , and neg-

ative. In what follows we use the following property of 

convergent infinite products: the discarding of one or a 

finite number of first factors from a convergent infinite 

product does not affect its convergence [6]. On this ba-

sis, we can conclude that the convergence of (22) im-

plies the convergence of at least one factor m

l
C

0
, 

where ...,3,2,1
0
l  are the harmonics of the TE oscilla-

tion of the cavity. Consider the consequences of the 

convergence of one factor m

l
C

0
.  

4. DISPERSION PROPERTIES  

OF THE CAVITY CORRUGATED  

IN THE AZIMUTH DIRECTION 

4.1. DISPERSION PROPERTIES  

OF A SMOOTH CAVITY 

It follows from (22) that for -ype oscillations with 

0  numerator of a convergent 
m

l
C

0
 tends to zero. 

Therefore, for the convergence of the infinite product 

(22) for the harmonic 
0

l  it is necessary that the denomi-

nator 
m

l
C

0
 also aspired to zero:  

   
0

00

0102






Rkx

lm

dx

xdJ
,         (23) 

where due to the lack of corrugation m can take any 

values ...,2,1,0 m , and  12
0
l  in expression 

(22), only odd. In contrast to (23), for 2-type oscilla-

tions 
0

2l  in the expression (22) takes only even values. 
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Therefore, combining these two cases of oscillations (2-

type and -type), we can conclude that the dispersion 

relation TE of electromagnetic oscillations in a smooth 

cavity is determined by the expression (23), where the 

order of the Bessel function of the first kind can take any 

integer values. The same result is obtained when solving 

equations (5), (6) for an ideally conducting smooth cavity 

as a result of applying the boundary condition (the equali-

ty of the tangential component of the electric field 

strength   0,
00



RE  on an ideally conductive lateral 

surface). 

In the absence of corrugation  0  from (23) it is 

not difficult to obtain the eigenfrequencies of the TE 

electromagnetic oscillations of a smooth cavity: 

2

0

2

,2

,
R

kc
ip

zip


 ,                  (24) 

where 
ip ,

   i -th zero of the Bessel function derivative 

  dxxdJ
p

/  order p   ...,3,2,1,0p . 

In what follows, when analyzing infinite products of 

the form (22), one should take into account the fact that 

the positive zeros of the derivative of the Bessel func-

tion n -th order are interspersed with the positive zeros 

of the Bessel function n -th order, i.e. are arranged as 

follows [8 - 10]: 

......
1,1,,,2,2,1,1,


 ininininnnnn
n (25) 

4.2. DISPERSION PROPERTIES  

OF A CORRUGATED CAVITY WITH A FINITE 

DEPTH OF CORRUGATION ( 1 )  

4.2.1. DISPERSION PROPERTIES  

OF A CORRUGATED CAVITY FOR CUT-OFF 

FREQUENCIES IN THE INTERVAL 

  1,1020
0




lm
x  

As noted above, the singling out of one factor in the 

infinite product (22), for example m

l
C

0
, does not affect 

on its convergence. In this case, the following chain of 

transformations holds: 
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It follows that 1

0


mm
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l
DPC  is a limited quantity that 

can be represented as a convergent infinite product [10]: 
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2
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2
12

2
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00
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.  (26) 

Let us analyze the conditions for the convergence of 

an infinite product (26). It follows from (26) that the 

cutoff frequency with an increase in the depth of the 

corrugation should decrease to zero; natural oscillations 

of the cavity  -type disappear due to the connection of 

an ideally conducting metal of the corrugations on the 

cavity axis at  = 1. Fig. 2 shows the approach of the 

vertices of corrugations with increasing depth of ripple 

 for     MRR cos1/
0

, where 42  mM . 

As follows from Fig. 2 graphs protruding toward the 

cavity axis of the corrugation apex approach the in-

crease in the corrugation depth, and in the limiting case 

 = 1 connects.  

 
Fig. 2. Approximation of the corners of the ripple 

 
0

/ RR   with an increase   for M = 4: 1   = 0.2;  

2   = 0.4; 3   = 0.8. Dotted line 4 determines the 

average radius of the cavity:   1/
0
 RR  

When crossing the vertices of the corrugations, the 

cutoff frequency for oscillations is absent, i.e. it can be 

set equal to zero: 0
10



x . In this limiting case the 

constant 
m

A  in (26) is equal to unity: 1
m

A .  

We use the convergence of the infinite product (26) 

with 1
m

A  for describing the dispersion properties of a 

corrugated cavity with a finite depth of corrugation 

 1 . To this end, we single out in the infinite product 

(26) in the interval   1,1020
1




lm
x  factor with a sin-

gularity, and the remaining infinite product is represent-

ed by a function   
0102

xf
lm 

, which does not have sin-

gularities in this interval: 

 
   11 012
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112
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x

lm
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Comparison of the analytical dependence (27) with 

the results of numerical calculations [3], confirmed by 

experimental data [4], shows that the function 

  
0102

xf
lm 

 monotonically increases in the interval 

  1,1020
1




lm
x , and can be represented in an asymp-

totic form: 

        
2

010201021020102
xxxf

lmlmlmlm 
 , (28) 

where  102 


lm
,  102 


lm
  102 


lm
 are the constants de-

pending on the azimuth number m  and harmonic num-

bers 
0

l . The magnitude of these constants is determined 

numerically or experimentally. Thus, it follows from 

(28) that in the interval   1,1020
1




lm
x  the following 

asymptotic dependence of the corrugation depth on the 

cutoff frequency of the cavity is valid: 

 
       12

01201212
112

0

000

0

1





















 xx

x
lmlmlm

,lm

. (29) 

Representation   
0102

xf
lm 

 square trinomial is jus-

tified, because calculated at 1
0
l  standard deviation 

 2
exp

2   depth of corrugation   from the ob-

tained by the numerical method, and confirmed experi-

mentally 
exp

  [3, 4], is less than 4.5·10
-7

. The above is 

supported by the data in Table 1. 
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Table 1 

Square deviations 2  of the dependence (29) on the exper-

imental data for the different number of corrugations 

0
l

 
m   102 


lm   102 


lm   102 


lm  

2
 

1 2 0.89079 0.2983 - 0.05127 1.20272·10
-7

 

1 3 0.41693 0.77469 - 0.11818 2.57956·10
-7

 

1 4 0.3845 0.8395 - 0.10684 4.50715·10
-7

 

1 5 0.21638 0.95621 - 0.10319 2.05052·10
-7

 

1 6 0.17379 0.97619 - 0.09024 1.42444·10
-7

 

In the interval 10
0
 x  the approximation of the 

infinite product (26) with the aid of expression (29) is 

not applicable. Therefore, in this interval, for small val-

ues of cut-off frequencies 
0

x   1
0
x , we represent 

expression (26) in another asymptotic form: 

   2

0

2

102
1 x

lm 
 , (30) 

where the constants  
2

102 


lm
 (30) and their derivatives 

with solutions (29) and their derivatives at points with 

coordinates  102 


lm


 and  1020 


lm

xx


.  

Table 2 shows the calculated values of the coordi-

nates of the joining points of the asymptotic solutions 

(29) with (30). 

Table 2 

Crosslinking coordinates of asymptotic expressions (29) 

and (30) 

0
l

 
m  2 3 4 5 6 

1 
 102 


lm


 0.904 0.710973 0.71038 0.68396

 
0.67932 

1 
 102 lm

x


 0.33364 0.998 1.0399 1.17102 1.22247 

1 
 102 


lm

 
0.9287 0.53869 0.51207 0.48005 0.46323 

The asymptotes (29) and (30) obtained above, each 

in its definition range, can be regarded as an analytical 

representation of the dispersion relation, since in the 

limiting cases of small  0,0  m  and large  1  

depths of corrugation, they determine the cutoff fre-

quencies of the TE oscillations of a smooth and corru-

gated cavity, respectively. 

Fig. 3 shows the dispersion curves, which character-

ize the dependence of the corrugation depth  from cut-

off frequency 
0

x  of azimuthally corrugated cavity for 

mode 1
0
l  and the number of corrugations mM 2 , 

where m = 2,3,4,5,6. Thus, in the interval 

  1,1020
0




lm
x  for a given number m  depth of ripple 

  are a monotonically decreasing function of the cut-off 

frequency 
0

x . Dispersion relations are described as not 

intersecting, with the exception of the point =1, curves. 

When the cut-off frequency 
0

x  tends to zero the corruga-

tion depth tends to unity. 

4.2.2. DISPERSION PROPERTIES  

OF A CORRUGATED CAVITY FOR CUT-OFF 

FREQUENCIES IN THE INTERVAL 

    1,10201,102 


lmlm
x  

In this interval of cutoff frequencies, the factor 
m

l
C

0
 

can be represented in the form: 
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where  102 lm
g  are the constants.  

From (31) we obtain an expression for the corruga-

tion depth: 
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Constants  102 lm
g  are determined from the condition 

that the derivatives 
0

/ dxd  expressions (29) and (32) at 

the points   1,1020 


lm
x . 

Constant values  102 lm
g  are given in Table 3. 

Table 3  

Constants  102 lm
g  

0
l

 
m  2 3 4 5 6 

1 
 102 lm

g  0.30655 0.2154 0.16358 0.12811
 
0.101199 

 

In the Fig. 3 numbers of curves 2,3,4,5,6 correspond 

to the value m. Curves 6,5,4,3,2   are mirror image of 

the axis 
0

x  curves 2,3,4,5,6. 

To compare the obtained analytical dependences 

with the results of other authors in Fig. 3 shows the 

points obtained by numerical calculations (markers 

◊,○,□,Δ,+) [3], and as a result of experimental studies 

(markers ■) [4]. In the figure in the range 3.00   a 

good quantitative agreement of the theoretical represen-

tations (29), (32) to the experimental and calculated data 

is achieved. The noted correspondence indicates the 

applicability of expressions (29), (32) for describing the 

dispersion properties of a corrugated cavity with a finite 

depth of corrugation in the cut-off frequency interval 

  1,1020
0




lm
x . 

 
Fig. 3. Dependence of depth of ripple   from cutoff 

frequency 
0

x for first harmonics  1
0
l  azimuthally 

corrugated cavity with a number of corruga-

tions mM 2 , where 6,5,4,3,2m      

Thus, the analytical dependencies of the corrugation 

depth obtained above   from cutoff frequencies 
0

x  

determine the dispersion properties of the first harmon-

ics of the corrugated cavity with the number of corruga-

tions mM 2   6,5,4,3,2m , since in the range 

3.00   they coincide with a high degree of accu-

racy with the results of numerical calculations and ex-

perimental data of other authors. 
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CONCLUSIONS 

The dispersion equation of an ideally conducting cy-

lindrical vacuum cavity with sinusoidal corrugated 

boundaries in the azimuth direction was obtained. Cavi-

ties of this type are basic for the study of the spectra of 

natural oscillations in gyrotrons. Conditions are deter-

mined under which the TE electromagnetic oscillations 

are nondegenerate. It is shown that for non-degenerate 

oscillations the number of corrugations must be an even 

number. For an even number of corrugations, non-

degenerate oscillations are  -type oscillations. For  -

type oscillations the dispersion equation of the cavity 

with sinusoidal corrugated in the azimuth direction is 

obtained. The dispersion equation of such a corrugated 

cavity is an infinite determinant equal to zero. The 

equality to zero of the infinite determinant indicates its 

convergence. From the property of convergence of an 

infinite determinant, a positive definite bounded alge-

braic form is obtained from which it is possible to ob-

tain the dispersion characteristics of both a smooth and 

a corrugated cavity. In the case of a cavity with a small 

depth of corrugation, analytical expressions are obtained 

that describe its dispersion properties. On the basis of 

the fact that when the depth of the corrugation tends to 

one, there are no natural oscillations of the cavity, an 

analytical description of the dispersion curves in this 

region of corrugation depths is offered. It is shown that 

the dispersion equation is symmetric with respect to the 

sign of the corrugation depth, i.e. the dispersion equa-

tion is valid both for the corrugation depth  , and 

 . In this case, in the plane, the depth of the cor-

rugation is the cutoff frequency, the dispersion curves of 

the cavity are characterized by mirror symmetry with 

respect to the cutoff frequency axis.  
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ДИСПЕРСИОННОЕ УРАВНЕНИЕ ЦИЛИНДРИЧЕСКОГО ВАКУУМНОГО РЕЗОНАТОРА  

С ИДЕАЛЬНЫМИ ГОФРИРОВАННЫМИ В АЗИМУТАЛЬНОМ НАПРАВЛЕНИИ СТЕНКАМИ.  

ЧАСТЬ I. ФИЗИЧЕСКИ ОСНОВАННЫЙ МЕТОД ПОЛУЧЕНИЯ ДИСПЕРСИОННОГО УРАВНЕНИЯ 

А.В. Максименко, В.И. Ткаченко, И.В. Ткаченко 

Исследованы дисперсионные характеристики цилиндрического резонатора с идеально проводящими 

стенками, радиус которого описывается синусоидально-периодической зависимостью относительно азиму-

тального угла. Из сходимости бесконечного определителя (дисперсионного уравнения) получена положи-

тельно определенная ограниченная алгебраическая форма, из свойств которой следуют дисперсионные ха-

рактеристики как гладкого, так и гофрированного резонаторов. На основе полученной алгебраической фор-

мы исследованы дисперсии первых гармоник гофрированного резонатора с четным количеством гофров. 

Полученные аналитические зависимости количественно соответствуют экспериментальным данным. 

ДИСПЕРСІЙНЕ РІВНЯННЯ ЦИЛІНДРИЧНОГО ВАКУУМНОГО РЕЗОНАТОРА  

З ІДЕАЛЬНИМИ ГОФРОВАНИМИ В АЗИМУТАЛЬНОМУ НАПРЯМКУ СТІНКАМИ.  

ЧАСТИНА I. ФІЗИЧНО ОСНОВАНИЙ МЕТОД ОТРИМАННЯ ДИСПЕРСІЙНОГО РІВНЯННЯ 

А.В. Максименко, В.І. Ткаченко, І.В. Ткаченко 

Досліджено дисперсійні характеристики циліндричного резонатора з ідеально провідними стінками, радіус 

якого описується синусоїдально-періодичною залежністю щодо азимутального кута. Зі збіжності нескінченно-

го визначника (дисперсійного рівняння) отримана додатньо визначена обмежена алгебраїчна форма, з власти-

востей якої отримуються дисперсійні характеристики як гладкого, так і гофрованого резонатора. На основі 

отриманої алгебраїчної форми досліджені дисперсії перших гармонік гофрованого резонатора з парною кількі-

стю гофрів. Отримані аналітичні залежності кількісно відповідають експериментальним даним. 


