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Mechanisms and criteria for the transition to chaotic dynamics of particles and fields under conditions of elec-

tron cyclotron resonances (ECR) are considered. It is shown that the known conditions for the onset of dynamic 

chaos of charged particles in external electromagnetic fields require careful use. The mechanism of the appearance 

of regimes with dynamic chaos has been discovered and described, even under conditions of isolated cyclotron res-

onance. Anomalous sensitivity of particle dynamics to external fluctuations is described. It is shown that the higher 

moments of particle dynamics can play a significant role. In this case, the usual diffusion equations require a revi-

sion. 
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INTRODUCTION  

It would seem that in the dynamics of particles and 

fields in ECR conditions everything is quite understand-

able and investigated. However, as will follow from the 

results of our work, many important questions of the 

dynamics of particles and fields in ECR have important 

features that were not previously studied. Really in sec-

tion 2 it is shown, that the transition of regular dynamics 

to a regime of chaotic dynamics requires an additional 

analysis of transition conditions. In the 3rd section it is 

shown that the dynamics of particles at ECR is anoma-

lously sensitive to external fluctuations. Ad-ditive fluc-

tuations can give rise to superdiffusion. Multiplicative 

fluctuations give rise to a fluctuation instability. In the 

4th section it is shown that a regime with dynamic chaos 

in the excitation of electromagnetic waves by a stream 

of charged particles can arise even under conditions of 

one isolated nonlinear cyclotron resonance. 

In Section 5 it is shown that the higher moments can 

play a more significant role than the lower moments. 

This means that for the kinetic description of these re-

gimes the known diffusion equations can not be used. 

Equations are needed in which these higher moments 

are taken into account 

1. CONDITION OF ARISING REGIMES 

WITH DYNAMICAL CHAOS 

Let us consider the motion of a charged particle in a 

constant magnetic field 0H  and in the field of a plane 

electromagnetic wave of arbitrary polarization: 
    0Re , Re /
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
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  0 0 , ,x y zE i  E .      (1) 

Here 
0E  is amplitude of electric field strength, 

 , ,x y zi  α  is vector polarization of wave. 

The equations of motion of a charged particle in this 

case has the form 

     0

d d e e
m e

dt dt mc mc
   

p
v E vH vH ,    (2) 

/d
dt

r p .       
 

For simplicity of writing the formulas, we shall con-

sider the simplest structure of the electromagnetic-wave 

field 

 Re 0, ,0yiEE ,  0,0, zHH ,  ,0,0xkk .  

In this case, the criterion for the overlap of two 

neighboring nonlinear cyclotron resonances, which was 

obtained in [1, 2], can be written in the form 

 2

0

216H s xW k  ,      (3) 

where ( ), /s s x HW p J k p   
   , cosxp p  , 

sinyp p   and dimensionless variables are intro-

duced  t  , / mcp p , kr r , /c k k , 

0 0 /eE mc  , 0 0/h H H , 
0 /H eH mc  . 

From the condition (3) follows that at 0sW   the 

wave amplitude necessary for the arising of regime with 

dynamic chaos tends to infinity. However, our numeri-

cal calculations show that this does not occur. We will 

remind that the criterion (3) has been obtained as a con-

dition for overlapping two neighboring nonlinear cyclo-

tron resonances (Chirikov criterion). Our analytical and 

numerical studies show that in this case (
0  ) for 

the formation of chaotic dynamics, the main role is 

played by other resonances that have not been taken into 

account in obtaining the criterion (3). 

We note that the influence of a large number of non-

linear cyclotron resonances with which the particle in-

teracts weakly can be modeled by the presence of an 

external noise influence. Indeed, as we shall see in the 

next section, the role of even small external fluctuations 

can radically change the dynamics of charged particles 

at cyclotron resonances. Qualitatively, these results can 

explain the arisen contradictions. 

2. INFLUENCE FLUCTUATIONS  

ON PARTICLES DYNAMICS  

It was shown in [3, 4] that under conditions close to 

autoresonance conditions, particle dynamics can be 

anomalously sensitive to external fluctuations. Below, 

we consider this question in more detail for the simplest 

structure of the field of an electromagnetic wave propa-

gating along the direction of the field 0 || zH : 

 Re ,0,0xEE ,  0, ,0yHH ,  0,0, 1zk k . 

We will analyze the influence of additive and multi-

plicative fluctuations in the most interesting case, under 

conditions close to autoresonance:  

 / 1 0s z z HR k s      .     
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2.1. ADDITIVE FLUCTUATION 

At the beginning, we will estimate the role of addi-

tive fluctuations. For this, taking into account the small 

value of the field amplitude 
0 1  , the system of 

equations (2) can be linearized [4]: 

   / , / ,d d B d d f            (4) 

where  0 1 0 0/ 2 sinB W   , 
1    , 1  , 

1  ,
 

 
0

0 /nR


    ,   , 
Hf   is additive 

fluctuation force. At the analytical study, we assume 

that ( )f    Gaussian, delta  correlated random pro-

cess with zero mean: 

     2f f D       , 0f  , 

where D is diffusion coefficient.  

In works [3, 4] it has been shown anomalous sensi-

tivity of the particles dynamics to such fluctuations at 

approach to an autoresonance ( 0  ). However, the 

energy gain of the particle remained diffusive: 

 2 /DB   .      (5) 

It is of interest to find out under what conditions the 

law of ordinary diffusion is replaced by the law of su-

perdiffusion: 

 2 32 / 3 D B         (6) 

Numerical studies were carried out for this purpose. 

For numerical calculations, the parameter value 

~ 0.033B  was chosen. The value of the parameter   

varied from 110   to 710  . To find the mean 

values of the square of the energy increment, averaging 

over the ensemble of forty realizations was carried out. 

As fluctuations, a random variable with a uniform dis-

tribution law in the interval ,H H    was chosen. 

The value 0.1H  . Initial conditions for the addition 

of energy and phase: (0) 0, (0) / 60    . 

Studies have shown that at change of the parameter 

  right up to 410   the dependence of the mean 

square of energy on time corresponds to the diffusion 

law (5) Figs. 1,a-b. 

  

  
Fig. 1. The dependence of the mean square  

of the particle energy on time: a) 110  ; b) 410  ; 

c) 510  ; d) 710   

Decrease the parameter   leads to a qualitative 

change in the dependence of the mean square of the 

particle energy on the time Figs. 1,c-d. The dependence 

of the mean square of energy on time instead of linear 

becomes quadratic with 510   and increases to cubic 
710  .  

These results show that the presence of additive 

fluctuations, even of very small amplitudes, actually 

leads to the appearance of superdiffusion. However, this 

occurs only in an exceptionally small neighborhood of 

the exact fulfillment of the autoresonance conditions. 

Under conditions of real experiments, it is practically 

impossible to satisfy the conditions of autoresonance 

with the required accuracy. Therefore, it is necessary to 

focus on the formula (5), and not on the formula (6). 

2.2. MULTIPLICATIVE FLUCTUATION 

Let us now consider what the presence of multi-

plicative fluctuations will lead to. Such fluctuations 

arise, for example, in the presence of fluctuations in the 

amplitude of the wave in which the particle moves. In 

this case, the dynamics of a particle located not in the 

vicinity of a singular point of the "saddle" type, but in 

the neighborhood of the "center" is of the greatest inter-

est. This is due to the fact that from the vicinity of the 

saddle point the particles exponentially move away 

from each other even under the action of regular forces. 

Equations for finding time dynamics   and   particle, 

which are close to points of the "center" type of a math-

ematical pendulum, in this case it is convenient to repre-

sent in the form [4]: 

(1 ( )) , .
du d

f u
d d


 

 
       (7) 

Here t B      . The relationship between par-

ticle energy and angle   takes the form: 

/B    .  

The numerical analysis of equations (7) has been 

carried out for the initial conditions (0) 0u  , 

(0) / 60  , amplitude of fluctuations 0.1H  . 

Fig. 2 shows the dependence of the mean square of the 

energy: the solid line is the result of numerical calcula-

tion, the dots indicate the approximation by the curve 

exp ( ) exp( )multF D   . The exponential dependence 

of the mean square of energy on time is clearly visible 

from the graphs of Fig. 2. 

 
Fig. 2. The dependence of the mean square  

of the particle energy on time 

3. EXCITATION OF ELECTROMAGNETIC 

WAVES BY A BUNDLE OF OSCILLATORS 

The dynamics of charged particles in external pre-

scribed electromagnetic fields becomes chaotic only in 

the presence of at least two nonlinear resonances. How-

ever, if an electromagnetic wave is excited by the parti-

cles themselves, then regimes with dynamic chaos can 

appear even in the presence of only one nonlinear reso-

nance. Let us show this result. To this end, we consider 
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the problem of excitation of an electromagnetic field by 

a monoenergetic beam of oscillators with a distribution 

function 

0 0 ||( ) ( )
2

bN
f p p p

p
 


 



  ,    (8) 

where 
||,p p
 perpendicular and parallel to the axis z 

impulse component, 
bN   equilibrium beam density. 

We shall consider the excitation of a wave propagat-

ing perpendicular to the external magnetic field. A 

complete nonlinear self-consistent system of equations 

that describes the dynamics of particles and fields con-

sists of the Maxwell equations and the equations of par-

ticle motion. Such a system is given in [1, 2]. Below, we 

write out truncated system of equations describing the 

dynamics of particles and fields in an isolated cyclotron 

resonance with number s : 

( ) si

s

dp
iJ e

d

 

  ,       

  
2

2

1
1 1 Re ( ) sis H

s

H

d s s
J e

d

 
 

   

 
    

 
, (9) 

22

0

0

( )
2

sib

s s

pd
i d J e

d




 
  

   ,    

where: /p p mc  , 2 2/ , 1H Hp       , 

/H oeH mc  , 2 24 e /b b en m   , /eE mc  . 

From the results of numerical calculations shown in 

Fig. 3, we can mark out the following features of the 

dynamics of particles and fields:  

with an increase in the density of active particles 

(within 20.002 0.04b  ), the level of the excited 

field increases. The dynamics of particles and the excit-

ed field is regular;  

with the beam density greater than 2 0.04b   a 

chaotic component appears in the dynamics of the excit-

ed field;  

beginning approximately from the beam density of 

0.5, the asymptotic value of the field does not exceed 

0.15.  

Thus, just as in overlapping cyclotron resonances 

(see, for example, [5]), the onset of local instability 

leads to a limitation of the level of the field excited by 

the beam (see Fig. 3). 

  

  
Fig. 3. The amplitude of the field versus time  

at a beam density: a) 2

b =0.04; b) 2

b =0.1;  

c) 2

b =0.5; d) 2

b =4 

We note that the same stabilization process is also 

characteristic of plasma-beam instability [6]. Such dy-

namics of the field with increasing particle density re-

mains fairly familiar as long as the particle density satis-

fies inequality 2 1b  . With further increasing of the 

particle density, when 2 1b   it was possible to assume 

that excitation of oscillations at the selected frequencies 

(
H  ) will be absent. Indeed, if inequality 2 1b   

oscillations at frequencies 
H   are not eigenmodes 

in such medium. When excited, these oscillations are 

damped. Indeed, due to the nonequilibrium nature of the 

beam system at frequencies 
H  , there is excitation 

of oscillations at these frequencies. However, these os-

cillations decay rapidly enough. The regime of relaxa-

tion oscillations appears in Fig. 3,d. It exists on a suffi-

ciently large time interval. However, over time, this 

regime goes into a regime of chaotic oscillations, and 

the process of excitation of oscillations at these frequen-

cies is stopped. With increasing particle density, the 

amplitudes of the excited oscillations decrease. As far as 

we know, the excitation of such relaxation oscillations 

has not yet been described. Such oscillations may, ap-

parently, arise in the ionospheric plasma. 

In the above model (see formulas (9)), one cyclotron 

resonance is isolated, and the dynamics of the interac-

tion of particles and fields in the isolated cyclotron res-

onance model is studied. In this case, the chaotization 

mechanism due to the overlap of the cyclotron reso-

nances is absent. An additional analysis was made of the 

dynamics of particles in an isolated cyclotron resonance. 

We assume that the amplitude of the wave is constant. 

In this case, the system of equations that describes the 

dynamics of a particle coincides with the system of 

equation (9), in which the third equation can be neglect-

ed. The dynamics of the particles is described by the 

first two equations. Such a system has the Hamiltonian: 

 ( , ) 2 ( 2 ) cos( )s s s

H H

s d
H I I I J I

dI


  

 
   , (10) 

where 2 / 2I  . 

It is easy to show that the phase portrait of the sys-

tem with the Hamiltonian (10) is topologically similar to 

the phase portrait of the Duffing oscillator. For a small 

value of the parameter 3

,0/G p   ( ,0p   initial parti-

cle momentum) ( 1G  ) on the phase plane there are 

three singular points. Two of them are points of the 

"center" type, one is the "saddle" type. If the amplitude 

is sufficiently large ( 1G  ), then two singular points, 

namely the saddle point and the point of the "center" 

type merge and disappear. There remains only one sin-

gular point  a point of the "center" type. It is necessary 

to pay attention to that fact that oscillations of the Duff-

ing oscillator are potential, and for the equations con-

sidered by us, it isn't possible to find potential. Typical 

types of phase portrait at small ( 1G  ) and at high 

( 1G  ) field strengths of the external waves are pre-

sented in Fig. 4. There are selected regions for trapped 

particles and a region for transiting particles. As can be 

seen from Fig. 4,a, on the phase plane, in full accord-

ance with the results given above, there are three singu-
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lar points: two types of center and a saddle point. As 

amplitude of the wave increases, two points ("saddle" 

and "center" with 0s  ) approach and disappear  

(see Fig. 4,b). 

  
Fig. 4. Phase trajectories: а)  =0.08; b)  =0.105 

Such a process of qualitative change in dynamics 

can cause a regime with dynamic chaos. Moreover, it 

can be seen that even the quantitative characteristics of 

the appearance of such a qualitative change in dynam-

ics, given in Figs. 3,a-b, confirm this possibility. Indeed, 

it can be seen from this figure that as soon as the ampli-

tude of the excited wave exceeds 0.105, the dynamics of 

the particles acquire an irregular character. With a fur-

ther increase in the particle density, and, corresponding-

ly, with increasing intensity of the excited wave, this 

irregularity becomes more noticeable. Already the in-

tensity of the field being excited for short times may 

exceed 0.2. However, the dynamics of the particle turns 

out to be such that, irregularly oscillating, the field am-

plitude reaches a level of the order of 0.15. This value 

of the field strength agrees qualitatively with the intensi-

ty of the wave field at which a qualitative change in the 

phase dynamics of the particles occurs  

4. ROLE OF THE MOMENTS IN DYNAMICS 

OF PARTICLES  

Often, particle dynamics in regimes with dynamic 

chaos are described in the framework of a diffusion 

equation of the Einstein-Fokker-Planck type equations. 

In particular, this approach is used to describe the dy-

namics of particles in ECR. See, for example, [7] and 

the literature cited there. However, such diffusion equa-

tions are valid only when the higher moments rapidly 

decrease and it is sufficient to take into account only the 

second moment. Below we show that in the regimes 

with dynamic chaos in ECR, in most cases the higher 

moments can play a more significant role. They need to 

be taken into account. In this case, the kinetic equation 

must contain these moments. The results of numerical 

studies of the dependence of the magnitude of the mo-

ments on their number and on the field strength are pre-

sented in Fig. 5.  

a b 

Fig. 5. Dependences of the magnitudes of the moments 

divided by the factorial of their number !m   

for the field amplitude: а) 
0 0.1  ; b) 

0 0.19    

These figures show the dependence of the magnitude 

of the moments on their number and the magnitude of 

each moment is divided by the factorial of its number 

(on !m ). It can be seen from these figures that, for a 

sufficiently low external field strength 

(
0 / 0.1eE mc   ) the moments rapidly fall with 

increasing number (see Fig. 5,a).  

However, for higher strengths (for 
0 0.19  ) the 

higher moments turn out to be larger than the moments 

with smaller numbers. Fig. 5,b shows that the moments 

increase with the number up to the number 6m  . 

This feature of the moments requires the modifica-

tion of the equations for describing the particle kinetics. 

To do this, we write down the relationship between the 

particle density at the instant of time    and the 

particle density at time  : 

 ( , ) ( , ) f( )n p n p p p dp  




     
 

. (11) 

Expression (11) is a mathematical reflection of the 

fact that the density of particles that have a momentum 

p  at a time   , will be determined by all other 

particles (with other energies). In this case, such parti-

cles with probability ( )f p , after an interval of time 

 , acquire momentum p . It is convenient to rewrite 

equation (11) in the form: 

 ( , ) ( , ) ( , ) ( , ) f( )n p n p n v p n p p dp    




        . (12) 

If the moments are finite, then, decomposing the in-

tegrands (12) with respect to small displacements and 

limiting ourselves to the second moments, we obtain the 

usual diffusion equation for the particle density with the 

diffusion coefficient 2 / 2D p . If the moments do 

not decrease, then a more general equation: 

 

!

m
m

m
m

pn n

m p

 


 
 ,   2 ; 1,2,3...m j j  . (14) 

For the case presented in Fig. 5,b, it is necessary to 

take into account 4-5 terms in the sum (14). 

CONCLUSIONS  

Thus, the results obtained above show that the chaot-

ic dynamics of particles and fields in ECR is not fully 

understood at the present time. Note the most important 

result for the application. Great hopes were placed on 

using the autoresonance condition to accelerate charged 

particles and to excite high-frequency oscillations. 8 

However, real attempts to construct such installations 

have shown their insignificant efficiency (see, for ex-

ample, Ref. 9). Such insignificant efficiency of energy 

exchange between particles and waves can be related to 

the anomalous sensitivity of particle dynamics with re-

spect to fluctuations (see Section 3 above). 
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ХАОТИЧЕСКАЯ ДИНАМИКА ПРИ ЦИКЛОТРОННЫХ РЕЗОНАНСАХ 

В.А. Буц, В.В. Кузьмин, А.П. Толстолужский 

Рассмотрены механизмы и критерии перехода к хаотической динамике частиц и полей в условиях элек-

тронных циклотронных резонансов (ЭЦР). Показано, что известные условия возникновения динамического 

хаоса заряженных частиц во внешних электромагнитных полях требуют осторожного использования. Обна-

ружен и описан механизм возникновения режимов с динамическим хаосом даже в условиях изолированного 

циклотронного резонанса. Описана аномальная чувствительность динамики частиц на внешние флуктуации. 

Показано, что значительную роль могут играть высшие моменты динамики частиц. В этом случае привыч-

ные диффузионные уравнения требуют пересмотра.  

ХАОТИЧНА ДИНАМІКА ПРИ ЦИКЛОТРОННИХ РЕЗОНАНСАХ  

В.О. Буц, В.В. Кузьмін, О.П. Толстолужський  

Розглянуто механізми та критерії переходу до хаотичної динаміки частинок і полів в умовах електронних 

циклотронних резонансів (ЕЦР). Показано, що відомі умови виникнення динамічного хаосу заряджених час-

тинок у зовнішніх електромагнітних полях вимагають обережного використання. Виявлено та описано ме-

ханізм виникнення режимів з динамічним хаосом навіть в умовах ізольованого циклотронного резонансу. 

Описана аномальна чутливість динаміки частинок на зовнішні флуктуації. Показано, що значну роль мо-

жуть грати вищі моменти динаміки частинок. В цьому випадку звичні дифузійні рівняння вимагають перег-

ляду.  

http://iopscience.iop.org/journal/0029-5515

