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Results of research of possibility of transformation of a wave difference equation into a system of the first-order
difference equations are presented. In contrast to the method used previously, an unknown grid function is split into
two new auxiliary functions, which have definite properties. Several examples show that proposed approach can be
used for solving different physical problems associated with the wave propagation in one dimension.
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INTRODUCTION

It is a well-known fact that second-order differential
problems are very often encountered in the applications,
especially among those derived from physics. A more
frequent appearance of second-order problems is also
true in difference equations.

The Helmholtz equation, which describes scalar
wave propagation suited for electromagnetic wave
propagating in a dielectric is the basic of the wave elec-
tromagnetic theory [1-12]. This differential equation
has no analytical solution in the general case, except for
a few special cases. It is usually considered in the
framework of model, in which instead of the continuous
variation of the permittivity ¢(&), the piecewise con-

stant law is introduced. Together with the matrix meth-
ods this approach gives possibility to study different
wave phenomena in inhomogeneous media [3, 6, 7, 9,
10]. Finite difference method is also used to analyze the
electromagnetic waves in stratified medium (see, for
example [13, 14]).

In this paper, a new method of modification of the
difference wave equation is presented, in which, the
difference equation is transformed into a system of the
first-order difference equations. We also propose re-
verse scheme for finding the characteristics of some
wave propagation problems. Numerical simulation
shows that this method gives acceptable results in the
study of some wave phenomena [15].

1. TRANSFORMATION OF A SECOND-
ORDER LINEAR DIFFERENCE EQUATION
We shall deal with difference equation
yk+1+yk—1_(2_h28k)yk =0, (1)
that is a grid approximation of the wave differential
equation
d’y
07 +&(&)y=0- )
It is common knowledge that a difference equation
of order k may be transformed in a standard way to a
system of k first-order difference equations [16 - 21].
For example, a second-order difference equation

Yier T&Yk TB Y =0 3)

can be rewritten as
Yk = TkYk—l + Fk ) (4)
where

Yy :[Xk]l % = Yo T :(_ak _bk]- Fe :(fk]' ®)
Yi 1 0 0
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This is a pure mathematic transformation that does
not take into account the possible physical meaning of
the solution of the equation (1). It is desirable that the
components of the vector Y, represent some physical

notions. For the case of wave propagation, very useful
notions are “forward and backward waves” that form
the general field. The problem of creating a special field
distribution is also needed in such approach [22 - 27].
We shall seek a solution of difference equation (3)
as [15]
e =Y +¥ (6)
where y®, y® are the new unknown grid functions.
By introducing two unknowns y&®, y® instead of
the one y, , we can impose an additional condition. Let
us assume that
Yer =POYE +PE0YE (7)
where p® and p® (p® = p®) are the given num-
bers. We will call p and p{? as characteristic multi-
pliers.
From (3), (6), and (7) it follows that we have the
system of linear equations:
Yo+ Y= pPyE + APy, 8)
(P8 + a0 )Y+ (A% +ac, ) Y2 =b . (2 + y2).
This system can be easily transformed into the nor-

mal system of difference equations:

@ _ 1) 2)
Yir = Tenn Yoo + T2 Yi s

C))
Yéﬂ =Tn y|£1) + T2 ylEZ) '

or in matrix form:

Vi |1 (%

@ =T @ |

yk+l yk
Transfer matrix T, has the following components

[+ (P2 +8u)p0 ] [ +(p2+a0u) o]
(B -09) (08 -00)
[bes+ (A0 +a.) " | [+ (A% +ac) AP ]
(n%-p2) (P8 -n)
If we know the matrix T, elements, we can find the
characteristic multipliers

1 _
P = Tk,ll +Tk,21’

(10)

(12)

=

12)
plEZ) =Tk,22 +Tk,12'

Now we describe several properties of the normal
system of difference equations (10).
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From (11) it follows that we can choose the se-
guences p and p® in such way that matrix T, will

be diagonal one. It is realized by setting T, ,, =0 and
Toa= 0

|:bk+1 +(,D|52+)1 +ak+1)p152):| _0
(o= (%)
_ |:bk+l +(plgl+)l + ak+1)plgl):| _ O
T = ® () o
(Pk+1 _pk+l)
These conditions give the non-linear second-order
rational difference equations (Riccati type' [18, 28 -

30]) for p®” and p®

(13)

Tk,lZ ==

(14)

=+ b +. +p(l'2)a +.
plgle) == blglé) —&a = = (1{(2) KL (15)
k Py
If p® = p@ , the system (9) takes the form:
Y = Py, w©
@ _ @y
Ya =P Y
Solutions of these equations are
k-1
O =T Toy?, 22k
= 17)

k-1

(2) _ (2),(2)

Yi _Hps Y
5=2

In this case y, y® are the linearly independent
solutions [31] of the equation (3). Indeed,

Yin +a Yo +by =0, (18)
Yr+ay +by =0. (19)
and the determinant A, (Y, y®) is not zero
v v
AZ (ylgl) ’ yIEZ)) = yrZ) ylzz)l =
k k+1 (18)

O ey
y;EZ) péZ) y;EZ)

Characteristic multipliers o and p* are the solu-
tions of the nonlinear difference equation (15) with the
initial values p® = p{? . In the general case, these ini-

tial values can be chosen arbitrary.
For the homogeneous case, the equation (15) takes
the form

~ WY (o7 =) 20

PEIPEY +apt? +b=0,  (19)
and has two stationary points p,, o, that are the solu-

tions of the characteristic square equation

p’+ap +b=0. (20)
The solution of the equation (19) is [29]
e (P27 =p)pl (PP = py) P}
P = L2) k-1 (L2) k-1 (1)
(pl ' _pz)pl _(pl oA )pz

If we choose pf” =p,, p? =p,, then

! Properties of the sequences defined by a difference equation of
Riccati type are presented in [28, 29]
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) k-1,,(1)

Yo' =P Y

4 = iy
This is a well-known result [16 - 21].
If we choose p® # p, and p!? # p,, the grid func-

(22)

tions yS’ and ylﬁz) are

1 k-1 1 k-1
o (PP =p)pl (P -p ) A5
Yo' = Vi
PP (23)
2 k-1 2 k-1
o (P2 =p) P (PP - 1) P
Yo = Y
P~ P

where p® = p® .
The sum of these grid functions ( y +y®) is a grid

function that do not depend on p® and p.

We must note that the stationary point of the equa-
tion (15) can be unstable.

Diagonal systems of difference equations can be
useful in many applications. One of them is finding

conditions when the grid functions y®, y{? have the
given properties.

Let’s, for example, find the condition when b, and
a, are not constants, but we want p® in (16) to be a
constant p = p, . From (15) we obtain that in this case
b.., and a,,, have to be linearly proportional

bk+1 = _p*ak+1 _p*z " (24)

In some cases, it is useful® to work with S-matrix

(see, for example, [9, 10, 32])

(2) @)
Yy y
yk +1 yk +1

Components of S-matrix for a second-order differ-
ence equation (3) are

[+ 2" (A% +30s) | (P -p)

|:bk+1 +pf? (plg-)l + ak+1)] |:bk+1 +p? (p& T, )}
(PLED -p? )bk+1 |:bk+1 +p? (plg)l + ak+1)]

[bkﬂ +p? (p& + am)] [bm +p? (p& + am)]

(25)

.(26)

2. WAVE PROPAGATION
IN ONE DIMENSION

2.1. WAVE PROPAGATION THROUGH
A HOMOGENEOUS DIELECTRIC LAYER

The differential equation (2) is usually considered in
the framework of model, in which instead of the contin-
uous variation of the permittivity £(&), the piecewise
constant law is introduced [3, 6, 7, 9, 10]. Matrix form
that was proposed in the previous section in the case of

h<<1 will be similar to the piecewise approach if

1 2
P, p?

equation

are the solutions of the “local” characteristic

pkz—(Z—hzgk)pk +1=0. 27

2 |t is known that S-matrix is useful when the solutions have ex-
ponential growth.

25



Indeed, in the frame of the piecewise approach we
can find the transfer matrix (see, for example [3, 6]) and
from (12) we obtain

pr? =exp(ifzh) . (28)

If ,fgk|h <1, pf® and p/® with an accuracy of
|&|h? satisfy the equation (27).

The most interesting question in the using of the

proposed matrix form is the properties of the partial

solutions y&, y® in the case when matrix T, is a di-

agonal.
Let’s consider the example of the wave propagation
through the homogeneous dielectric layer®

1, -—w=<é<E
£=96, §<E{<G (29)
1 ¢>5

Using the standard “mode matching technique” [33],
we obtain analytical expressions for the reflection and
transmission coefficients

(2, ~1)2isin{ [z, (& - &)} exp(i25 +ig,)

' _[( e, +l)2exp{—i &, (& —51)}—(\/2—1)2exp{i\/§(§2 —51)}]
T 4 e, explic, -i£) .
' [( e, +1)zexp{—i e, (&, —.fl)}—(\/Z—lrexp{i\/z(fz —51)}}

Consider the case when the layer permittivity
g, =3+ix0.03 and ¢ =2x, &, =11x27. For these

parameters |R;| = 0.3274, [T,| = 0.5307 Grid approxima-
tion for the permittivity (h=27/100) is:
1 k=-m,..,N,
& =13+i0.03 k=N, +1,..,N,
1, k=N, +1,..,00

(30)

N, =100
N, =1100 . (31)
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Fig. 1. Graph of the modulus of grid function
=y® +y® where y®,y® are the solutions of the
systems of the first-order difference equations (25)
(S-matrix approach). Matrix T, is not a diagonal —(1).

Graph of modulus of the grid function y
1)-()

Using the S-matrix formalism (25) with p®, p®

that are the solutions of the “local” characteristic equa-
tion (27), we can calculate the reflection and transmis-
sion coefficients and the values of the grid function

for the reverse problem (y{ =

% Unlike the works [13, 14], we consider fields in the whole
space, not only in the layer.
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Ve =Y, =yP+y® (for k<N, and k>N, y? is a
forward wave and y* is a backward wave).

For y» =1, y® =R and y® =0, k> N,, we ob-
R™| = s3] =0.3222, |T<Y>|=|s§1|=o.5312.
Comparison R™ and T with the exact values R, and
T, shows good agreement. Graph of the grid function
Y, is presented in Fig. 1 (1).

It was already noted that the sequences o and

tained

p? are the arbitrary ones. But in the frame of the S-
matrix formalism it is convenient to use p, p® that

are the solutions of the “local” characteristic equation
(27) before and after the dielectric layer, and the arbi-
trary values insider the layer. In this case R=S;; and

T =S;,. For example, if we choose o =0.5 and
p? =08 inside the dielectric layer, we obtain
|R|=[s5i|=0.3222, [T|=|s};|=0.5312. Using the other

values of p® and p® at constant h practically do not

change R and T . This result proves that the choice of
the values of p®, p{? does not effect on the numerical

solutions of the difference equation (1).
If p®, p are the solutions of the Riccati equa-

tions (15), y® and y{® are the linearly independent

solutions. For finding these solutions we have to set the
initial conditions p®, p{? . It is convenient to choose

PP, p? that are the solutions of the “local” character-
istic equation (27) with & =1: p =p@ o = p@

Results of calculation the solutlons of the Riccati equa-
tions (15) y® and y®? with the initial conditions
y® =1, y? =1are presented in Fig. 2.

Are these functions y®,y® associated with the
function, ? Comparison of these grid functions shows
that the following relation is fulfilled

Y, =y +ROYD, 32)

A |

= [V

0 200 400 600 800 1000 1200 1400
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Fig. 2. Graphs of modulus of the grid functions y® (1)
and y® (2) for the wave diffraction on the homogene-
ous dielectric layer. Matrix T, is a diagonal

Up to now we have deal with the grid functions
y®,y®  which fulfilled the initial conditions

y®P =1 y® =1 and were calculated on the basis of
equations (16) with o, p® which are the solutions of
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the Riccati equations (15) with the initial conditions

o_ O @ _ O
pl pvac’ pl pvac :
If we set the initial conditions® y{) =1, y) =1 and
W_ 0 @ _ @

PN, = Pacr PN, = Puc » @nd solve the equations (16) and
the Riccati equations (15) in the reverse order

o _ O (l)
yk - yk+1 / :0

(33)
O -y
b
1.2) _ k+1 (34)
k ’
A

we obtain the new grid functions that are the independ-
ent solutions of the wave equation, too. After the layer,

they describe the forward and backward waves. So, y.*
has no physical meaning and we have to deal with y®
only. Graph of modulus of the grid function y® for the
inverse problem are presented in Fig. 1 (2).

From physical point of view, before the layer y®

must be the superposition of the forward and backward
waves. Using simple decomposition, we can find ampli-
tudes of the forward and backward waves and find the

reflection and transmission coefficients |R“ev) =0.3219,
|T(’ev) =0.5314. Comparison R and T with the

exact values R, and T, (or with RY, T™)) shows

good agreement. Setting the initial value
y® =Y, =0.531xexp(ix1.9865) gives the full coinci-

dence of y*™ and Y, .

2.2. WAVE PROPAGATION THROUGH
AN INHOMOGENEOUS DIELECTRIC LAYER

Let’s consider wave reflection from an inhomogene-
ous layer. To obtain a rigorous solution of this problem,
we must solve the equation (2). Such rigorous solutions
in closed form are known only for a few forms of the
function ¢(&) [1 - 6]. One function is

(&) = (35)
(b+é) 5)

In this case, electric field amplitude varies along the

coordinate according the law [2]

E=C,(b+&)" +C,(b+&)*,  (36)
where C,,C, are arbitrary constants and
1 N
Zl,zzzi Z_a- (37)

Using the standard “mode matching technique”, we
obtain analytical expressions for the reflection and
transmission coefficients
exp(-is, +i&)

b+§1h _ i
~% (b+&, “[1 (b+é)}{ (b+&)- }

(b+5)
(0+2)
@2 Eear [1 (bif%)}w*@’ ]

T,=2 , (38)

4 N3 > N2 is an arbitrary number. In our calculations we took
N, = 1200.
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R, =exp(ié; ~15) . *

et ) LR R
no (&)

P (bw{l <bifia>ﬂ AR }

Consider the case when h=27/100, a=327?%,
b=2z and & =27, & =11x2z (&(&)=1.98;

£(£,) =0.0055). For this parameters |R;|=0.6876,
[T,|=0.7260 (|R,|" +|T,|* =1.0000). Using the “reverse
approach” (33) and (34), we get |R(”V) =0.6911
=0.7230 (|R"™ 1.0003). Compari-

son R™ and T"® with the exact values R, and T,
shows good agreement.

CONCLUSIONS

Results presented above show that we can transform
the wave difference equation into a system of the first-
order difference equations by splitting an unknown grid
function into two new auxiliary functions. These func-
tions are defined with an accuracy of two arbitrary grid
functions. But the sum of these functions does not de-
pend on the values of these auxiliary grid functions.
Obtained numerical results coincide with the exact ones
calculated on the bases of the exact formulas.
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PACITPOCTPAHEHME BOJIH B CJIOUCTOM CPEJIE: HOBASI MATPHUYHASI ®OPMA
BOJIHOBOI'O PABHOCTHOI'O YPABHEHMUA

H.U. Aiizaukuii

IIpencTaBneHsl pe3ynbTaThl UCCIEAOBAHUS BO3MOXKHOCTH NTPE0OPa30BAHMUS BOJTHOBOTO PA3HOCTHOTO YPaBHEHHUS
B CHCTEMY Pa3HOCTHBIX ypPaBHEHHH IEPBOTO MOpPsIKa. B oTiH4me OT CymeCTBYIOMIEro MOAX0/1a, B MPEIaraeMoM
MeTojie ceTouHast (PYHKIUSI NPEACTAaBIsIETCS B BUJIE CyMMBI JIByX HOBBIX CETOYHBIX (DYHKIIMH, KOTOpbIE 00JIalaloT
OTIpeJIeTICHHBIMH CBOWCTBaMH. PaccMOTpeHHbIe NMpUMEpPHI IOKa3bIBAIOT, YTO NpEAIaraéMblii METOJ MOXET OBITh
MOJIE3HBIM MPU UCCIIEJOBAaHUH IIPOLECCOB PACIIPOCTPAHEHHS BOJIH B OJHOMEPHOM CIIydae.

PO3MOBCIOAXKEHHS XBUJIb Y IHAPYBATOMY CEPEJOBUIII: HOBA MATPUYHA ®OPMA
XBUJBbOBOI'O PI3BHULIEBOT'O PIBHSAHHS
M.I. Aizauvkui

[IpencraBneni pe3yibTaTH TOCITiIKEHHS MOXKINBOCTI IEPETBOPEHHS XBUIHOBOTO Pi3HHUIIEBOTO PIBHSIHHS B CHC-
TeMy PI3HHIIEBHX PiBHSIHB IEPIIOTO MOpsAAKY. Ha BiAMiHY Bifl iCHYIOYOTO MiXOMy, B MPOTIOHOBAHOMY METOJI CiT-
KOBa (DYHKIIISI IPEJCTABISETHCS Y BUTIIAI CYMH JBOX HOBHX CITKOBHUX (YHKITIH, SIKi MafOTh TIEBHI BIAaCTHBOCTI. Po-
3TISHYTI TPUKIIATN MOKa3yIOTh, IO MPOIIOHOBAHUK METOJ MOKe OYTH KOPHUCHHM TIPH JOCIiIKEHHI TPOIIECiB pO3-
TTOBCIOJKCHHS XBIWIb B OTHOBHMIPHOMY BHIIAJIKY .
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