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A novel approach to the synthesis of the electromagnetic field distribution in a chain of coupled resonators has
been developed. This approach is based on the new matrix form of the solutions of the second-order difference
equations. If a chain of coupled resonators can be described by the second-order difference equation for amplitudes
of expansion of the electromagnetic field, two linearly independent solutions can be constructed on the basis of the
solutions of nonlinear Riccati equation. Setting the structure of one solution, from the Riccati equation we can find
the electrodynamical characteristics of resonators and coupling holes, at which the desired distribution of amplitudes
is realized. On the base of this approach we considered the problem of separation of the electromagnetic field into
“forward” and “backward” components in the inhomogeneous chain of resonators. It was shown that in the frame of

considered model such separation is not defined uniquely.

PACS: 84.40.Az
INTRODUCTION

There are three main fields of using the coupled res-
onator chains — accelerators [1], RF-sources, mainly
travelling wave tubes (TWT) [2] and RF filters [3]. If
for the first two applications it is necessary to create the
special field distribution for the given frequency (accel-
erators) or some frequency range (TWT) along of the
chain, then for the RF filters requirements are imposed
on the amplitude-frequency and phase-frequency char-
acteristics at the chain output.

Coupled-resonator circuits are of importance for de-
sign of RF/microwave filters, in particular, the narrow-
band bandpass filters that play a significant role in many
applications. There is a general technique for designing
coupled-resonator filters in the sense that it can be ap-
plied to any type of resonator despite its physical struc-
ture [4, 5].

In coupled-cavity TWTs several tens of coupled cavi-
ties are used as the slow wave structure. The efficiency of
a TWT is limited by peculiarity of the bunching process
and the bunch transfer from decelerating phase into the
accelerating phase of the RF field. The usual technique
suggested for increasing the efficiency involves tapering
of the wave phase velocity so that the decelerated bunch-
es remain within the decelerating phase of the wave.
There were proposed several methods for synthesis of the
optimum phase velocity distribution along the slow
wave structure (see, for example, [6 - 13]).

The widest use the the cavity chains have found in
the accelerator technique. At the very beginning of its
development, the RF accelerators have the RF resona-
tors as the main element of its construction. Disk-loaded
waveguides [14 - 19], different side-coupling standing
wave structures [20, 21], hybrid (combined) accelerat-
ing structures (the initial part of the structure is a stand-
ing wave buncher, and its main part is a disk-loaded
waveguide) [22, 23] - this is a short enumeration of the
different coupled resonator chains that are used in ac-
celerators. There is enormous number of publications
that describe the calculation and design the accelerating
structures.

The calculation of parameters and the design play an
important role in the process of developing an accelerat-
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ing structure. No less important role is played by the
process of tuning cells after section brazing.

In order to provide synchronism with the beam and
electromagnetic field in the accelerating structure, the
phase advance of each cell needs to be adjusted to its
nominal value. This can be done after brazing by cor-
recting machining deviations, assembly and brazing
mismatching. This adjustment process is called tuning
(post-tuning).

The tuning methods based on the non-resonant per-
turbation field distribution measurement [24 - 30] have
been widely used for tuning travelling-wave structures,
especially in tuning the constant-gradient ones [31 - 44].

There are several approaches for post-tuning. The
most widespread tuning method became one, in which
the field distribution was considered to be a linear su-
perposition of forward and backward waves in each cell
[31]. The internal reflection of each cell was obtained
by calculating the difference of the amplitudes of the
backward waves seen before and after that cell. But
forward and backward waves were not strictly deter-
mined. Their amplitudes were introduced phenomeno-
logically.

Development of the Coupling Cavity Model (CCM)
[45 - 48] gives possibility to look into this method more
deeply [49, 50]. However, the problem of expanding the
electromagnetic field into the forward and backward
waves in each cell of the inhomogeneous chain has not
been cleared up yet.

In this article a novel approach to analysis of the
electromagnetic field distribution in a chain of coupled
resonators is presented. This approach is based on the
new matrix form of the solutions of the second-order
difference equations [51].

1. SECOND-ORDER LINEAR DIFFERENCE
EQUATION FOR THE CHAIN OF THE
FINITE NUMBER OF RESONATORS

In the frame of the CCM electromagnetic field in
each cavity of the chain of resonators are represented as
the expansion with the short-circuit resonant cavity
modes [17, 18, 52 - 55]
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In the case of N =1, the system of coupled equa-
tions (3) is very similar to the one that can be construct-
ed on the basis of equivalent circuits approach (see, for
example, [20, 56 - 58]). But in the frame of the CCM
the coefficients o X are electrodynamically strictly
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how to calculate the matrix elements.
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For the chain of cylindrical resonators longitudinal
component of electric field at r =0 (on the system lon-
gitudinal axis) is:
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If we can ignore “long coupling” interaction, the set
of coupling equations (3) takes the form*
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The set of coupling equations (6) can be considered
as the second-order difference equation. This difference
equation, which defines the amplitudes of the basic

modes e{f) , is the main equation of the CCM. It is rea-
sonable to note that the amplitudes of the basic modes
el*) are non-measured values. Indeed, we can measure

the components of electric field in any point, for exam-

ple, by the nonresonant perturbation method, but we

cannot measure el and have to use numerical methods

for finding these amplitudes by using the expansion (1).

Yhere is a problem of taking into account absorption of RF ener-
gy in walls as there are difficulties in obtaining appropriate eigen
functions for cylindrical regions. All developed procedures in the
frame of the CCM do not include this phenomenon. We used the
simplest approach for including absorption into consideration. We
supposed that the coupling coefficient do not depend on absorption
and include the quality factor into the resonant term in the equations
for ey, amplitudes.
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This circumference create difficulties in studding the
properties of the real slow-wave waveguides, including
their tuning [31, 49]. The similar situation arises also in
other electrodynamic models. For example, the space
harmonics in homogeneous periodic waveguides are
non-measured values, too.

We will consider the chain with the finite number of
resonators (Fig. 1). The first and the last resonators are
connected to the transmission lines? and the equations
(6) for k =1 and k =N have to be changed [58]
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where g, p, — coupling factors of the first and the last

resonators with transmission lines; Z — impedance of
the input transmission line; R, — shunt impedance of the

first resonator, U = JP Z12; P — power of the external

RF source; d, — length of the K-th resonator.

Amplitude of the reflected wave in the input trans-
mission line is
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Fig. 1
According to the results of the work [51], we will
seek a solution of difference equations (6) - (8) as
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Using this representation, the equations (7), (8) can
be rewritten as
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and there are such matrix difference equation for new
unknowns [51]
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2We will consider the chains with the transmission lines connect-
ed to the first and end resonators. Other connections can be considered
similarly.
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Values of the grid vectors in the first and the
(N =1)-th cells are connected by a linear relation
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We can choose the sequences p” and p{® in such
way that the matrix T, will be the diagonal one [51].
From (14) it follows that T, =T, ,, =0 for p, o
which fulfilled Riccati type difference equation (the
second-order rational difference equation) [60, 61] with
different initial values of p® and p® (p® = p®)
g _(Zk+1 _aéll(glkd)pku)pk =0,1<k<N-2.(18)

Solution of the matrix difference equation (13) with
the diagonal matrix T, is
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We will call o and p® as characteristic multipli-

ers.
In this case, the equation (17) transforms into
(N,N-1)
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Solving the equations (16) and (20), we obtain
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o = 2T R L (2,0, -alf), @

231

ISSN 1562-6016. BAHT. 2018. Ne3(115)

2wl |BR 1 -
yo :_ng—lé) {17 d—lu (ZNp&l)_l—aéi‘ovN 1)), (24)

Wy1o
where

9=(Z,-afi P )(Zu P2y " )T -
_(Zl_a(()ig)pl(a)(zmpr(\ll)-l_aé;\‘dNil))Tﬁ"'

We introduced the two linearly independent grid

functions y&, y{? which are the product of multipliers

(25)

o and p® (see (19)). These multipliers are the solu-
tions of the nonlinear difference equation (18) with dif-
ferent initial values of p® and p{?. These initial values
of p and p!? can be chosen arbitrarily. Therefore,
we have a continuous set of the two linearly independ-
ent grid functions y®, y®, sum of which gives the
same grid function %) = y® +y® for the given struc-

ture of the chain. In the process of synthesis we can
change the structure of the chain in such way that

PP, p? and y®, y@ will take the required values

and the desired electromagnetic field distribution (eff))

in a chain of coupled resonators will be realized.

It is a usual requirement to insure no reflected signal
in steady-state, which corresponds to the matching the
input transmission line to the considered chain
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From (27) it follows that the critical value of the
coupling factor g, is

G, = (29)

(1)
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As f, isareal positive value, then ImG has a min-
imal value
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If the chain has a single input (standing wave struc-
ture), we can create the desired field distribution by
choosing the values of p, p{ and finding the geo-
metrical parameters of resonators and coupling openings
from the Riccati difference equation (18). Characteris-

tics of the first resonator are determined by equations
(30) and (31).

ImG > — (32)
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If the chain has two ports (traveling wave structure),
there is additional possibilities for manipulating with field
distribution. We can create the field distribution based on

the one solution y (y =0). In this case the value of
amplitude %) equals the value of amplitude e{{;® mul-
tiplied by the factor p® (quasiperiodic structure):

K
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Such electromagnetic field distribution can be real-
ized if the initial value of the second solution equals to
zero

(33)

y? =0. (34)
From (24) it follows that such condition must be ful-
filled
Zy pl(\ll)—l _aé;\‘OYNil) =0. (35)
This equation determines the characteristics of the
last resonator and the value of coupling with the output
transmission line

2 (N,N-D) =
o oy, " Repy

(N,N) _
1+a01o _a)(N)Q o > —O, (36)
010 |pN—1
(N) | (D=
_ (NN-1) Do MO
ﬁN — T~N%o10 P —(1) > -1, (37)
o]
o |?
a)|pN—1
(D=
Im py”; <N (38)
Qu @610 Ao

From (28) and (29) it follows that G = p® and the
matching condition (27) takes the form
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The initial value y® (23) do not depend on the char-
acteristic multipliers p®
R1y
Bz d,
It is important to note that from (37) and (40) it fol-
lows that the coupler is not a symmetric element. Only
at Q — oo the coupler do not reflect from two sides.

2. SOLUTIONS OF THE DIFFERENCE
EQUATIONS FOR THE HOMOGENEOQOUS
CHAIN

Characteristic multipliers p® and p® are the solu-
tions of the nonlinear difference equation (18) with the
initial values p® = p{® . In the general case, these ini-
tial values can be chosen arbitrary. Input transmission

line matching requirement imposes some restrictions
(see (32), (38), (42)) on these values.

W __
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For the homogeneous chain, the equation (18) takes
the form
Z
PP —px—+1=0. (44)
010
This equation has two stationary points

2
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The first stationary point is unstable (|;(1|’2 >1), as
the other one is attractive (|;(2|’2 <1).
The solutions of the equation (44) is [61]
(p—2) = (o~ ) 2
(o —2)d (o 2 )

If o, =2 . then p, =, ,if p =y, then p =2,.
If we choose pf =y, p® = y,, the grid function

. (46)

P =

y® will correspond to a “forward traveling wave” and
y? to a “backward one”.

Yo =n"y 2<k<N,
v = ty?, 2<k <N.
If we choose p® = y, and p® # y,, the grid func-

tions yifl)

(47)

and yéz) will correspond to some combina-

tions of the “traveling waves”.
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where p = p®.
The sum of these grid functions (y® +y®) is a grid
function that do not depend on p® and p?.

3. SYNTHESIS OF THE COUPLED
RESONATOR CHAIN WITH DESIRED
ELECTROMAGNETIC FIELD
DISTRIBUTION

In the CCM electromagnetic field distribution is de-
fined by the amplitudes of the basic oscillations [45 - 48].
For description the lowest passband we have to choose
the amplitudes of E,, mode as basic oscillations.

In the considered above approach the distribution of

amplitude el is defined by the characteristic multipli-

ers p, p? and initial values of grid functions y®,

y? . So, during the synthesis process, we must choose

a chain structure (parameters of resonators and coupling
elements) such that the coefficients p”, p® and y®,

@
Yi

value of amplitudes e%)

tors will be realized.
Below we will consider the chain of cylindrical res-
onators that are connected via circular central openings

will take on the required values and the desired
in a chain of coupled resona-
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in the walls — the disk loaded waveguides (DLW)?. It
was shown that the DLWs, that are usually used in lin-
acs, with disk spacing large enough (d > 1/3) can be
describe with sufficient accuracy by the difference
equation (6) [62]. Appropriate values of the coupling

coefficients ol ol at fixed frequency can be

approximated by some functions of geometrical sizes.
Calculations on the base of the CCM show that for the
most often used in linacs DLWSs such approximations
can be used

ol = g U P+ t ~k+1 Pra ’
bZd
k Ok
(k,k-1) _ uk (49)
Apg =A==
\ i

u
(k,k+1) _ K+1
o0 S

add o ~ b - d
:b*zdk* plE)’ bk:b_k!dk :_k, ak —the hOIe

radius between k-1 and k resonators; b, — the radius
of k cylindrical resonator; d, — the resonator length,

where u,

b, :c@, d, — normalizing parameters, () =c/101 ,
@ b,
2 _ p(S)
Jo(A) =0, a=—5—, P "C .
o 3723 (A1) p

Analysis shows that we can consider parameters
P, pl as the functions of the geometric sizes of the
diaphragms only (the opening radius a,, the thickness
t, of the diaphragm between k-1 and k resonators

and the radius of the rounding of the disk hole edges).
For t =04cm, d,=3.0989cm, parameters

p®, p{ can be represented” as
p® =0.0142a7 -0.1329a, +0.9133,
p© =-0.0928a2 +0.4491a, -0.0444.
The parameter p” determines the deviation of the

(50)

dependence of the coupling coefficient o™ on a,
from the law a’, p{ — the deviation of the dependence
of the resonator frequency shift due the hole in the k —
disk on a, fromthe law a’ (see (49)).

The equation (18) after separation of the real and
imaginary parts and making some transformations takes
the form

= = Up(l) ‘ cos(p,) - pk+1:|

b

b ‘pkl)‘sm(¢k)Qk i

o UPIED‘(Sin((”k +@) —sin(p,) By ‘plgl)l‘)_sm((ok—l)ﬁkﬂ} 0 1)
k sin(p)|of” | o d '

DLW structures are the most often used in linacs and represent
the chain of cavities in which the phase varies smoothly from cell to
cell in such way, that an accelerated particle constantly locates in
accelerating field.

*For simplicity, we will consider the case without of the rounding
of the disk hole edges. For taking into account the rounding of the disk
hole edges.
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Parameters of the first and last resonators can be
found from equations

b14_512_d72ﬁ ERGUCCORLE

b=

uk+1
(52)
, 2<k<N-1.

(83)

2 Q |p®|sin(e®). (54)

bl \

by —b; _JNIUW['O“ |0, ~cos(g2,) ] =0, (55)

== =3 | (1) Qu Sm((pN—l) -1. (56)

By specifying the values of the multipliers o and
a certain set of resonator parameters, from equations
(51) - (56) we can find the missing set of parameters.
Amplitudes el in the chain with this full set of resona-
tor parameters will distribute along structure in accord-
ance with the formula (33).

Proposed approach can be used for developing of
different inhomogeneous DLWs.

Among the slow wave waveguides, the most com-
plex structure have the ones with phase velocities that
change along the longitudinal coordinate (an injector in
linacs [1, 63 - 65], TWT [2, 6 - 13]). They must ensure
not only the acceleration (deceleration) of particles, but
also their grouping into small bunches. Injector sections
for linacs are usually designed with a constant phase
shift between cells, but with a variable length of resona-
tors. The proposed above approach gives possibility to
design the structures with the inhomogeneous phase
shifts.

As example, we considered the possibility of creat-
ing smooth transition between the DLW with

=147/15 and the DLW with ¢, =27/3 (Q=00).
For f = 2856 MHz, d=3.0989cm, t=0.4cm the
phase velocity changes from 0.71C to C.

We chose two sequences for p® . The first one (the
sequence N1) is

exp(ip,), k<s
exp(il3z/15), k =5

P =exp(il27/15), k =s+1 .
exp(illz /15), k =s+2
exp(ip,), k>=s5+3

The second one (the sequence N2) is

exp(ip,), k<s
0.949exp(i137/15), k =s

oV =10.949exp(i127/15), k =s+1 .
0.949exp(illz/15), k =s+2
exp(ip,), k>=s+3

Geometry calculated on the basis of equations (51) -
(52) are presented in Table. Geometry used for calcula-
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tion on the base the CCM differs in the homogeneous
parts less than 2 pm.

N1 N2
ak bk ak bk
k=s-2 | 1.4 419633 [ 1.4 4.19633
k=s-1 [ 14 419633 [ 1.4 4.19633
k=s 1.4 415983 [ 1.4 4.16117
k=s+1 | 1.16863 4.10769 | 1.18496 4.11500
k=s+2 | 1.06051 4.08584 | 1.10506 4.09765
k=s+3 | 0.99754 4.07353 | 1.06792 4.08760
k=s+4 | 0.95872 4.06882 | 1.04010 4.08261
k=s+5 | 0.95872 4.06882 | 1.04010 4.08261
R=7.29E-003 | R=7.64E-003 |

Calculation results of the longitudinal electric field
distribution in the resonator centres obtained on the ba-
sis of the CCM are presented in Figs. 2 and 3 (s =11).
We see that the longitudinal electric field has nearly the

same phase distribution as the chosen one for the ef)

amplitudes. We can also see that for the same phase dis-
tribution we can create different amplitude distributions®
which are desirable for different types of injectors — the
first distribution with the increasing amplitude [65] and
the second one with the constant amplitude [64].
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Difference between the specified phase shifts per
cells and calculated on the basis of the CCM.

Amplitude distributions calculated on the basis of
the CCM.

For high current linacs it is needed to develop accel-
erating sections with constant phase shifts between the
cells (¢, =const) and the amplitudes of the electric

field increasing along the structure (|eé'{3| # const) (see,

° Many possible structures realize the variable phase velocity. As the
power flow must be constant (Q =c0), then needed distribution of

electric field amplitudes determine the law of change of the aperture
sizes. We can realize the increase of the phase velocity at the constant
(or increasing) apertures, but the amplitudes have to increase strongly

(see, for example, [8, 9]).
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for example, [62, 66]). Setting the law of amplitude var-
iation along the structure |eé§3| we can find the full set
of resonator parameters from equations (51) - (52) with
such characteristic multipliers
|e(k+1)

@ _ 010

KT ak)
|e010

exp(ip). (59)

4. FORWARD AND BACKWARD FIELDS

In light of work on the new matrix form of second-
order linear difference equations [51], we can look at
the problem of expanding the electromagnetic field into
the forward and backward waves in each cell of the in-
homogeneous chain of resonators from the new point of
view.

We have shown that in the chain that is described by
the second-order difference equation (6) we can realize
any reasonable (a, exp(ip,)) amplitude-phase distribu-

tion that is the product of the characteristic multipliers
k-1
e =y® =y p®, 2<k<N.  (60)
s=1

For that we have to choose the resonator and open-
ing sizes that are fulfilled the relations (51) - (52) and
the parameters of couplers (53) - (56). At such geomet-
rical sizes the second independent solution of the equa-
tion (6) equals to zero. As there is no reflection from the
input coupler, we can consider that RF power transmits
through the structure without reflection. This electro-
magnetic field we can consider as the “forward” one.

Let’s suppose that the output coupler is detuned
(Zy PP, =l ™ #0). What changes will occur in the
distribution of the amplitudes e{{ ?

From (10), (19) it follows that the new field
will appear in addition to the “forward” field

500 _ g 4 g _
e010 - yk + yk -

k-1 k-1
~50[1p + 90T, 25k <N,
s=1

s=1

(61)

The amplitude of the “forward” field § differs from
the unperturbed one y® and depends on the initial value

of the characteristic multiplier o and the value of the
output coupler detuning (see (23), (25)). The characteris-
tic multipliers p® are the solution of the difference
equation (18) with defined coefficients and with the ini-
tial value p® which we can choose arbitrary.

In the limit Q =c, when Z, is the real value and
the couplers become the symmetrical elements, there is
a reasonable background to consider that the amplitude
of the “forward” field § do not depends on the tuning
of the output coupler. Then from (23) and (25) we ob-
tain the initial value p{?

Z, —agy p? =0. (62)
As f,/Q, has a finite value (see (39), (40)), we have
Z o A= oy IMA7 - (59)

From (62) it follows that
PP =Rep —ilmpf = o (64
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and, as Z, is the real value from (18) we obtain

P2 =p. (65)

Therefore, the additional field that arises due to re-

flection from the output coupler becomes the conven-
tional backward field.

The problem becomes more difficult at Q # . The

characteristic multipliers p{ that define the structure

of additional field are the solution of the difference
equation (18). This equation we can rewrite as

(k+1,k) (k+1,k)

@ _ %o10 010 @) _
Pra = gtk @ T teke?) S0 + o 1Sk <N -2, (66)
10 Px Q10 Py

where  p® = p® is a free

) =it P, 1<k <N-2 (the homogeneous

chain) and p =exp(ip—y)(1<k<N-1) we have
the solution of the equation (66) in the analytical form

(67)

parameter. If

p? = pl(l) =exp(—ig+y), 1<k <N-1.

In the general case, the equation (66) has no simple
solution. As p? is a free parameter and there is not
reasonable background for its choice, then the structure
of additional field and its amplitude §* are not define
uniquely. Moreover, the amplitude of the “forward”
field §* which depend on p® and p?, (see (23)) is
not define uniquely, too.

Therefore, in the frame of considered model the sep-
aration of the electromagnetic field into “forward” and
“backward” components in the inhomogeneous chain of
resonators is not define uniquely. It is needed to apply
some additional criteria for defining the properties of
“reflected” fields.

CONCLUSIONS

We presented the novel approach to the synthesis of
the electromagnetic field distribution in a chain of cou-
pled resonators that can be described by the second-
order difference equation for amplitudes of expansion of
the electromagnetic field. This approach is based on the
new matrix form of the solutions of the second-order
difference equations that give possibility to construct
the two linearly independent solutions. Setting the struc-
ture of one solution, from the Riccati equation we can
find the electrodynamical characteristics of resonators
and coupling holes, at which the desired distribution of
amplitudes is realized. Several examples show that pro-
posed approach can be useful in solving different physi-
cal problems. On the base of this approach we also con-
sidered the problem of separation of the electromagnetic
field into “forward” and “backward” components in the
inhomogeneous chain of resonators. It was shown that
in the frame of considered model such separation is not
defined uniquely.

The problem of creating a special field distribution
is attracting attention of different researchers. This prob-
lem arises at the construction and design of new materi-
als including nano-materials with so called cloaking
properties (see, for example, [67 - 70]). The proposed
approach can be used as a numerical tool to design 1-D
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devices and materials that manipulate waves in a speci-
fied manner.
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HOBBI METOJ] CHHTE3A PACIPEJAEJEHUS SJIEKTPOMATHUTHOI'O IOJIS
B HEITOYKE CBA3AHHBIX PE3OHATOPOB
H.U. Aiizauyxuii

Pa3paboTaH HOBBII METO/ CHHTE3a PACHPEICIICHNS HIEKTPOMArHUTHOTO MOJIS B [IETIOYKE CBSI3aHHBIX PE30HATO-
poB. DTOT MeToJ Oa3upyeTcsi Ha HOBOW MAaTpHUYHOM (opMe pelIeHHi pa3HOCTHOTO YpaBHEHHS BTOPOTO IOPSIKA.
st citydast, Korja LeNoUYKy CBSI3aHHBIX PE30HATOPOB MOKHO OIIMCATh Pa3HOCTHBIM YPaBHEHUEM BTOPOIO MOPSIKA
JUIA aMIUTMTY]] Pa3JIO’KEHHs 3JIEKTPOMAarHUTHOTO TI0JIA, /1BA HE3aBUCUMBIX PEIICHHUS MOTYT ObITh IIOCTPOEHBI Ha OC-
HOBE pelICHUH HeNMHEHHOTo ypaBHeHUS Pukkatu. 3amaBas CTPYKTYpY OJIHOIO pELIeHMs, W3 ypaBHeHMA Pukkatu
MO>KHO HalTH IEKTPOJAMHAMUYECKUE XapAaKTEPUCTUKU PE30OHATOPOB U OTBEPCTHH CBA3H, IIPU KOTOPBIX pPEaIU3yeT-
cs1 HeoOXoIMMOe pacIpejiefieHne aMILIMTyA. Ha ocHOBe 3TOro mojxoja paccMoTpeHa npodiieMa pas3/iesieHHs dJIeK-
TPOMArHUTHOTO TIOJISI Ha «IPSMBIE» U «OOpaTHBIC) KOMIIOHEHTHI B HEOJHOPOJHOM IIENOYKe Pe30HAaTOpoB. BbuIo
MOKAa3aHo, YTO B paMKaxX pacCMaTpUBAaeMOW MOJENN TaKOe pa3/ieJICHUE He ONPEeIIsIeTCs OAHO3HAYHO.

HOBHU METOJ CUHTE3Y PO3IOJILITY EJEKTPOMATHITHOI'O IOJIS
B JIAHIIIOKKY 3B'SI3AHUX PE3OHATOPIB
M.I. Aiizayvkuit

Po3pobneHo HOBHI METOJ CHHTE3Y PO3MOLTY eIeKTPOMArHiTHOTO TOJIsI B JIAHITIOKKY TIOB'SI3aHUX PE30HATOPIB.
Leit meTox 6a3yeThcsl HAa HOBIM MaTpUYHIN (OPMI pPIllIeHb PiI3HUIIEBOTO PIBHSIHHSA JIPYroro nopsaky. s Bumanaky,
KOJIH JIAHII0)KOK TTOB'SI3aHUX PE30HATOPIB MOKHA ONMCATH PI3HUIIEBUM PIBHSAHHIM JPYroro HOPSAKY A aMIUTITYA
PO3KJIaJaHHs €JIEKTPOMArHiTHOTO II0JIS, /1Ba HE3AJIS)KHUX PIMIEHHS MOXYTh OyTH MOOYZOBaHI HAa OCHOBI pillleHb
HeJiHiitHoTO piBHsAHHS PikkaTi. CTaBIsS4M CTPYKTYPY OJHOTO PIllieHHs, 3 piBHAHHS PikkaTi MO)KHA 3HAHTH eneKTpo-
JMHAMIYHI XapaKTEepPUCTUKU PE30HATOPIB 1 OTBOPIB 3B'A3KY, IIPH SKNUX PEai3yeThcs HEOOXIMHMH PO3MOALT aMIlTi-
Tya. Ha migcraBi Takoro miaxoy po3risiHyTO IpoOJieMy PO3/ICHHS eJIEKTPOMArHiTHOTO ITOJISl HA «IIPSIMi» Ta «3BO-
POTHI» KOMIIOHEHTH B HEOJHOPIJHOMY JaHIf031 pe3oHaropiB. [loka3aHo, 1110 B paMKax pO3IIISTHYTOI MOJeNi Take
PO3IINCHHS HE BU3HAYEHO OJHO3HAYHO.
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