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Dispersion equation of a cylindrical cavity with an ideally conducting outer wall has been investigated, whose
radius is described by a sinusoidal-periodic dependence on the azimuth angle. Numerically and analytically it is
shown that in the neighborhood of intersection points of neighboring harmonics here appear non-transmission bands
in which there are no oscillations of the cavity. The dependence of the width of the unblocking band on the corruga-
tion depth is determined. It is shown that for an arbitrary choice of the corrugation depth and the number of corruga-
tions of the cavity in its frequency spectrum, it is possible that there are no natural frequencies that were originally

assumed to be working.
PACS: 41.20.Jb, 42.82.Et

INTRODUCTION

Due to the wide range of applications of corrugated
resonance systems, a correct analysis of the dispersion
properties of such systems is relevant. In this paper we
investigate the dispersion equation obtained in [1]. The
non-transmission bands are investigated, and the disper-
sion curves are compared with the corresponding dis-
persion curves, which are obtained in the traditional
way.

THE INTERACTION OF TWO ADJACENT
HARMONICS OF THE AZIMUTHALLY
CORRUGATED CAVITY

NUMERICAL SOLUTION
OF THE DISPERSION EQUATION OF THE
AZIMUTHALLY CORRUGATED CAVITY

To describe the interaction of two neighboring har-
monics, it is necessary to specify the point or points of
their intersection, since harmonics can interact with
each other only when intercepted [2].

In the analytical form, this is difficult to do. There-
fore, we solve the problem of the presence of intersec-
tion points using numerical methods. For this purpose,
similar to the numerical calculations carried out in [3],
the dispersion equation (14) in [1] was solved in order
to determine the dependence of the corrugation depth of
the azimuthally corrugated cavity with the number of
corrugations M =2m from cutoff frequency x, .

In Fig. 1,a,b the dispersion dependences that deter-
mine the depth of corrugation of the azimuthally corru-
gated cavity with the number of corrugations
M=2m=4 (a) and M =2m=6 (b) from cutoff fre-
quency X, .

As follows from Fig. 1 results of numerical calcula-
tions, at the points of intersection of the first mirror
harmonics 2'(3") with second harmonics 6(9) intervals
are formed along the depth of the corrugation, in which
there are no real values of the cut-off frequency. In the
figure, these regions are marked by ovals 1 and 2.
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Fig. 1. Dependence of depth of ripple o from cutoff
frequency x, for mirror reflections of the first harmonic

I, =1 (curves 2" and 3") and second harmonic I, =2

(curves 6 and 9) azimuthally corrugated cavity with a
number of corrugations M =4 (a) and M =6 (b)

The membership of the curves 2'(3") and 6(9) first
(1, =1) and second (I, =2) harmonics are respectively
determined from the values of the cutoff frequencies in
the absence of corrugation (when o =0). The values of
these cut-off frequencies are shown in Fig. 1 in the form
of numbers above the axis of abscissas. It can be seen
from them that the curves 2'(3") first and curves 6(9) of
the second harmonic are determined by the first zeros
(n=1 in (26) in [1]) the derivative of the Bessel func-
tion dJ,,, (X, )/ dx.

However, as follows from the figure, the second
harmonic also interacts with the first-harmonic harmon-
ics (I, =1), formed by the second zeros (n=2 in (26)
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in [1]) the derivative of the Bessel function

A 2100 (X, )/ dX (oval 3).

From the above numerical calculations it follows
that for the given cutoff frequencies x, there are inter-

vals along the depth of ripple (Aa), i=1,2;3, where

the cutoff frequencies of the corrugated cavity are ab-
sent. This means that in these intervals there are no eig-
en oscillations of the cavity.

On the basis of the foregoing, it can be concluded
that for an arbitrary choice of the corrugation depth and
the number of corrugations of the cavity in its frequency
spectrum, the absence of those natural frequencies that
were originally assumed by workers.

ANALYTICAL STUDY OF THE DISPERSION
EQUATION OF THE AZIMUTHALLY
CORRUGATED CAVITY

On the basis of the resulting convergent infinite
products, we investigate the dispersion properties of a
corrugated cavity.

The convergent infinite product (22) in [1] implies
the convergence of not only the first harmonic (26) in
[1] ([Cp|=1 with 1, =1 and m=2,3,4,5,6), but also
the convergence of the product of two neighboring har-
monics, for example, |C =B, <o, where B

lop+1
is the finite number.

For an analytical description of the interaction of
two neighboring harmonics, it is necessary to specify
the point of their intersection. Harmonics can interact
with each other only when suppressed [2].

Let us describe in general form the interaction of
neighboring harmonics |, and |, +1 at an arbitrary val-

ue m.
We specify the coordinates of the points of intersec-
tion of neighboring harmonics in the form:

a=a, m(2lp1)r Ko = X;(Zlo—l}'
A numerical comparison of the ones is shown in
Fig. 3 in [1] for the first harmonics of TE modes of the

corrugated cavity and curves 2'(3") and 6(9) in Fig. 1 that
shows that [C/|-|C.,(=(Cy,|=B; >1. Inequality B’ >1
is a consequence of the large slope of the curves 6(9).

On the basis of the foregoing, we form a bounded
positive definite form of the form:

Qm(zlo—l) (OL) = (1+ Cm(zlo—l) X1+ Cm(zlo+1))< ©, (1)
where
o o

Cm ~ :i—lcm AT emE (v )]
(o) fm(Zlo—l)(Xo) o) Blo fm (210+1) ( 0)

Qo0 (@) > 0 is the bounded positive definite function.
The form Q,,,,,,,(c) must be set so that far from the

point of intersection the harmonics are not influenced,
and in the vicinity of the point of intersection they are
connected in accordance with the requirements of mode
coupling in corrugated systems [4].

In accordance with (22) in [1], the form (1) must de-
pend on the square of the depth of the ripple o, since in
this case the change in sign o does not change the dis-
persion of waves.

I+
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As a function Q. . (a), satisfying the require-

ments of the mode coupling in corrugated systems, we
choose a model function of the form:

(O( — (X* m(2lp-1 )2 J (2)
(a':'l(Zlg -1) )

It follows from (2) that in the neighborhood of the
intersection point of the dispersion curves (for

|0c o limited  positive  form

— p? 2Nm(219-1)
Qm(z|071)(a)— Praig-1)& 0 exp(_

2lp-1) < am(zl 1))

Qm(2|071) (OL) is

Qm(2|071)(0(): pri(zlofl)(x’ <<1, where Pr2i-1) is a
number depending on the number of intersecting har-
monicsl,, N, ., =0,123... are the positive integers.

Far from the intersection point of the dispersion
curves of the corrugated cavity (for

|a a, >> Oy a0-0) the mutual influence of the

described by

2Nm(21p-1)

expression

m(2lp-1)
harmonics is not significant, because function
Qg (0t) is quite small:

2Nm(21p-1)

Quiong o) (0) << P2yt . In this case, Eq. (1)
describes two independent harmonics: 1, and I, +1.

Thus, from the assumptions made above on the de-
pendence Q,,, ,(ct) from corrugation depth o, it fol-
lows that near the point of intersection of the harmonics
their frequency spectra turn out to be connected.

To describe the connection between the harmonics,
we can perform the following substitutions in (1) (for
negative signs of the second terms of the factors in the
right-hand side of (1)), the following substitutions:

o= oL:n(zlof1) Yo X0 = X;( ) T X

2lg-1 m(2lp-1) ?
where we consider Yon(zio) | << O 1)+
(2lo-1) | << X0 - AS @ result of such substitutions, we

obtain an equation describing the coupling of harmonics
(henceforth everywhere the wavy sign of 'y, , . and

Xn(zipe) OMIL):
(ym(zlo—n = Kot X2 Xym(zlo—n + By Koz Xm(zlo—m):
= Prag @ "By '(a;(zlo—1> f. @
where K, 1 :%a(x , and the depth of ripple

“n(21-1)
oc(x) is determined by the expressions (29), (32) from
[1] in the appropriate ranges of the argument variation.
In equation (3), the parameters N, ., and P,
are uncertain.
Therefore, to analyze (3), we set these parameters.
Parameter N, , we define, for example, assuming
Noo, o =K -1, where the number K=12,3,...
the mismatch between a given harmonic and a higher
harmonic I, + K, which intersects with the given |, .
Thus, for example, m=2 and |, =1 for neighbor-
ing harmonics the exponent K is equal to one (K =1).
This corresponds to the intersection of the first mirror

determines
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harmonic m(2l, -1)= with harmonics
m(2(1, + K)-1)=6.

If the K is equal to two (K =2), this corresponds
to the intersection of the first harmonic m(2l, —1)=
with a harmonic located one from the first:
m(2(l, + K)-1)=10.

If the indicator is equal to three (K =3), this corre-
sponds to the intersection of the first harmonic
m(2l, —1)=2" with a harmonic located two from the
first: m(2(l, + K)—-1)=14 etc.

It should be noted that the proposed definition of the
parameter N, , follows from the property of the in-

teraction of spatial harmonics in corrugated waveguide
systems [5, 2].
Parameter p, ., We determine from the geometric

characteristics of the intersecting harmonics.
From Fig. 1 it follows that with growth m for

neighboring harmonics (K :1) the coordinates of their
intersection points X, ,, , With an increase in the num-
ber of harmonics |, shifted from zero the derivative of
the Bessel function v, .., to the lower zero v, .,
so that the conditions:

= Xin(a1g-1) Ym (210-1) 1| P, << 1,

( By 21p-1) 1 (4)
where p, is the maximum approach along the abscissa
axis of the derivative of the Bessel function v, .,

with a point of intersection of harmonics.
From the last condition (4) it can be shown that for
neighboring harmonics, when the parameter N, =0, it

m(21g+1)

m(21g-1)? m(2lg+1) Xm(

ym(zlo—l) lp

is always possible to find conditions under which

Prtzio1) = Po (Koo K

Thus, summarlzmg the foregoing, the equation of
coupling of neighboring harmonics can be represented
in the form:

Xm(zlg—l)):

(ym (21p-1) _|k|0m X m(21p-1) Xym(zlofl) + B|:
BI:: : (a:w(ZIo—l))z : (5)

- po m(21p-1) |k

We consider the particular case of intersection of
neighboring (order of intersection K =1) harmonics
I, =1 and |, +1=2 azimuthally corrugated cavity with
m=2. Equation (5) in this case describes the non-
transmission bandwidth, i.e. corrugation depth interval
o, where there are no real cut-off frequencies X, .

Fig. 2 shows the graph of the hyperbola arising in
the neighborhood of the intersection point of the curves
m=2" and m=6 with coordinates o, =0.878 and
X, =4.366 . Parameters B? and p, were estimated by
numerical calculations (see Fig. 1,a), and were chosen
equal: B/ =5.7; p,=0.2.

Numerical calculations show that the width of the
non-transmission bandwidth in the considered case of

the order of
)1 = po\l B12|k2||ks Z BT VASEE L) |ke|0ﬂ2 ~0.

m(21g-1) m(2lg+1)| *

m(2lp+1)

m(2lg+1)

40

0.8
m=2' /
~/

4.2 4.3 4.4 4.5 4.6
Xo
Fig. 2. The unblocking band (the shaded area)
in the vicinity of the intersection point of the dispersion
curves m=2" and m=6 with coordinates o, =0.878

and x, =4.366

This value corresponds gquantitatively to the numeri-
cal method.

Thus, in this section it is shown that in a corrugated
cavity for a given m in the neighborhood of the points

of intersection of the harmonics (21, +1) with mirror
reflection of harmonics (21, —1) the non-transmission
bands appear. In these bands there is no oscillation of
the cavity. For the order of intersection K the width of
the unblocking band depends on the depth of the corru-
gation in proportion aK’l(onj‘om), where o, is the ordi-
nate of the point of intersection of harmonics 2I, -1
and 2(1, +K)-1.

The above-described appearance of  non-
transmission bands at the intersection of harmonics
21, +1 with mirror reflection of harmonics 2I, -1 fol-

lows from direct numerical calculations of the disper-
sion equation (14) in [1].

CONCLUSIONS

The dispersion equation of an ideally conducting cy-
lindrical vacuum cavity with sinusoidal corrugated
boundaries in the azimuth direction was investigated.
The dispersion of the first harmonics of a corrugated
cavity is studied for different, even number of corruga-
tions. Analytical dependencies are quantitatively con-
sistent with the experimental data.

The interaction of two neighboring harmonics of the
azimuthally corrugated cavity is studied. It is shown that
for a given m, in the neighborhood of the points of in-

tersection of the harmonic |, +1 with mirror reflection
of harmonics |, the non-transmission bands appear. In

these bands there is no oscillation of the cavity. The
width of the unblocking band depends on the depth of

the corrugation as ocK‘l(oc;‘Om), where a, is the ordinate

of the point of intersection of harmonics I, and I, +K,
K =12,3,... is the mismatch of harmonics. The pro-

posed analytical description of oscillatory processes in
an ideally conducting cylindrical vacuum cavity with
sinusoidal corrugated boundaries in the azimuth direc-
tion is confirmed by numerical calculations.
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It is shown that for an arbitrary choice of the corru-
gation depth and the number of corrugations of the cavi-
ty in its frequency spectrum, it is possible that there are Waveguide // International Journal of Infrared and
no eigenfrequency that were originally assumed to be Millimeter Waves. 2000, v. 21, Ne 6, p. 1019-1029.
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JUCIHEPCUOHHOE YPABHEHHUE HUJINHAPUYECKOI'O BAKYYMHOI'O PE3OHATOPA
C UAEAJIBHBIMHU I'O®PUPOBAHHBIMHU B ABUMYTAJIBHOM HAIIPABJIEHUN CTEHKAMM.
YACTbD Il. HCCJIIEAOBAHUE JUCIIEPCUOHHOI'O YPABHEHUA

A.B. Makcumenko, B.U. Tkauenxo, U.B. Tkauenko

HccnenoBaHo ANCTIEpCHOHHOE YPaBHEHNE IMIMHAPHIECKOTO PE30HATOPA € UICATbHO MPOBOISIINMHI CTEHKaMH,
paguyc KOTOPOTO OIHCBHIBACTCS CHHYCOWAAIBHO-TIEPHOANYECKON 3aBUCHMOCTHIO OTHOCHTENBHO a3MMYTAIBHOTO
yrina. YNCIeHHO M aHAIMTHYECKU TTOKa3aHO, YTO B OKPECTHOCTH TOYEK MEPECEUEHHsI COCETHUX TapMOHUK IOSIBIISA-
I0TCS TOJIOCHI HETIPOIYCKaHUs, B KOTOPBIX KOJIeOaHHsI pe30HaTOpa OTCYTCTBYIOT. OmpeiesieHa 3aBUCHMOCTh IUP -
HBI TTOJIOCHI HEMPOITYCKaHMs OT IiTyOuHBI rodpupoBky. [lokazaHo, 4To IpH MPOU3BOJILHOM BEIOOpE TITyOHHBI TO ]-
PHPOBKM M KOJIMYECTBA TOPPOB PE30HATOPA B €r0 YACTOTHOM CIIEKTPE BO3MOXKHO OTCYTCTBHE T€X COOCTBEHHBIX
9acTOT, KOTOPBIE TIEPBOHAYAIBHO MPEIIOIaraluch pabounmu.

JUCHEPCIAHE PIBHAHHSA LIAJIIHAPUYHOI'O BAKYYMHOI'O PE3OHATOPA
3 IIEAJIBHUMHA T'O®POBAHUMU B ABUMYTAJIBHOMY HAIIPAMKY CTIHKAMM.
YACTHHA 11. JOCILI)KEHHA JUCHHEPCIMHOI'O PIBHSIHHS

A.B. Makcumenko, B.1. Tkauenko, I.B. Tkauenxo

JociimkeHo aucnepciiHe piBHSAHHS MIIHPUYHOTO pe30HATOpa 3 1/IealbHO POBITHUMH CTIHKaMH, Paiyc KO-
T'0 OIUCYETHCS CUHYCOIAATBHO-TIEPIOTNYHOO 3QJISKHICTIO BITHOCHO a3MMYTAJIBHOrO KyTa. UHCENbHO Ta aHAIITHYHO
MOKa3aHo, IO MOOJIM3Y TOYOK MEPETHHY CYCIHIX TAPMOHIK 3'SIBIISIOTBCS CMYT'H HENPOIYCKAaHHS, B SIKUX KOJMBaHHS
pe3oHaropa BincyTHi. Bu3HaueHO 3aNeHICTh MIMPUHMA CMYTH HENPOIyCKaHHs Bin rubOuHM rodpysanus. [Tokasa-
HO, IO TIPH AOBUTEHOMY BHOOPI TIHOMHY TOPPYBAaHHS 1 KITBKOCTI TopiB pe3oHATOpa B HOTO YaCTOTHOMY CIIEKTpi
MOXJIMBA BiICYTHICTh TUX BJIACHUX YACTOT, sIKi CIIOYATKy Iependadanncst pooounmMu.
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